Theoretical Catalysis-Center for High Entropy Alloy Catalysis (CHEAC), Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Kbh, Denmark.
Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
Angew Chem Int Ed Engl. 2021 Mar 22;60(13):6932-6937. doi: 10.1002/anie.202014374. Epub 2021 Feb 10.
Complex solid solutions ("high entropy alloys"), comprising five or more principal elements, promise a paradigm change in electrocatalysis due to the availability of millions of different active sites with unique arrangements of multiple elements directly neighbouring a binding site. Thus, strong electronic and geometric effects are induced, which are known as effective tools to tune activity. With the example of the oxygen reduction reaction, we show that by utilising a data-driven discovery cycle, the multidimensionality challenge raised by this catalyst class can be mastered. Iteratively refined computational models predict activity trends around which continuous composition-spread thin-film libraries are synthesised. High-throughput characterisation datasets are then used as input for refinement of the model. The refined model correctly predicts activity maxima of the exemplary model system Ag-Ir-Pd-Pt-Ru. The method can identify optimal complex-solid-solution materials for electrocatalytic reactions in an unprecedented manner.
复杂固溶体(“高熵合金”)由五种或更多种主要元素组成,由于具有数百万个不同的活性位点,这些活性位点具有独特的多种元素排列方式,直接与结合位点相邻,因此有望在电催化领域带来范式转变。由此产生的强电子和几何效应是调节活性的有效工具。以氧还原反应为例,我们表明,通过利用数据驱动的发现周期,可以掌握此类催化剂所面临的多维挑战。经过迭代细化的计算模型预测了活性趋势,在此基础上合成了具有连续成分分布的薄膜库。然后,将高通量特征数据集用作模型细化的输入。经细化的模型可以正确预测出示例性模型体系 Ag-Ir-Pd-Pt-Ru 的活性最大值。该方法可以以前所未有的方式识别出用于电催化反应的最佳复杂固溶体材料。