Suppr超能文献

更精细尺度上的跳虫颜色:有活力的弹尾目金属色背后的机制。

Springtail coloration at a finer scale: mechanisms behind vibrant collembolan metallic colours.

机构信息

Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium.

Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krijgslaan 281, S12, B-9000 Ghent, Belgium.

出版信息

J R Soc Interface. 2021 Jul;18(180):20210188. doi: 10.1098/rsif.2021.0188. Epub 2021 Jul 7.

Abstract

The mechanisms and evolution of metallic structural colours are of both fundamental and applied interest, yet most work in arthropods has focused on derived butterflies and beetles with distinct hues. In particular, basal hexapods-groups with many scaled, metallic representatives-are currently poorly studied and controversial, with some recent studies suggesting either that thin-film (lamina thickness) or diffraction grating (longitudinal ridges, cross-ribs) elements produce these colours in early Lepidoptera and one springtail (Collembola) species. Especially the collembolan basal scale design, consisting of a single lamina and longitudinal ridges with smooth valleys lacking cross-ribs, makes them an interesting group to explore the mechanisms of metallic coloration. Using microspectroscopy, Raman spectroscopy, electron microscopy and finite-difference time-domain optical modelling, we investigated scale colour in seven springtail species that show clear metallic coloration. Reflectance spectra are largely uniform and exhibit a broadband metallic/golden coloration with peaks in the violet/blue region. Our simulations confirm the role of the longitudinal ridges, working in conjunction with thin-film effects to produce a broadband metallic coloration. Broadband coloration occurs through spatial colour mixing, which probably results from nanoscale variation in scale thickness and ridge height and distance. These results provide crucial insights into the colour production mechanisms in a basal scale design and highlight the need for further investigation of scaled, basal arthropods.

摘要

金属结构色的机制和演化既有基础又有应用价值,但节肢动物的大多数工作都集中在具有明显色调的衍生蝴蝶和甲虫上。特别是,具有许多鳞片、金属代表的基础六足动物群目前研究甚少且存在争议,一些最近的研究表明,薄膜(薄片厚度)或衍射光栅(纵向脊、交叉肋)元件在早期鳞翅目和一种跳虫(弹尾目)物种中产生这些颜色。特别是跳虫的基础鳞片设计,由单个薄片和具有光滑山谷而没有交叉肋的纵向脊组成,使它们成为探索金属着色机制的有趣群体。使用微光谱学、拉曼光谱学、电子显微镜和有限差分时域光学建模,我们研究了七种表现出明显金属色的跳虫物种的鳞片颜色。反射光谱基本均匀,呈现宽带金属/金色,在紫光/蓝光区域有峰值。我们的模拟证实了纵向脊的作用,它与薄膜效应一起产生宽带金属色。宽带颜色通过空间颜色混合产生,这可能是由于鳞片厚度和脊高和距离的纳米级变化造成的。这些结果为基本鳞片设计中的颜色产生机制提供了重要的见解,并强调需要进一步研究有鳞片的基础节肢动物。

相似文献

6
Thin-film structural coloration from simple fused scales in moths.飞蛾中由简单融合鳞片产生的薄膜结构色
Interface Focus. 2019 Feb 6;9(1):20180044. doi: 10.1098/rsfs.2018.0044. Epub 2018 Dec 14.
10
Coloration mechanisms and phylogeny of Morpho butterflies.闪蝶的色彩形成机制与系统发育
J Exp Biol. 2016 Dec 15;219(Pt 24):3936-3944. doi: 10.1242/jeb.148726.

本文引用的文献

2
A Dynamic Optical Signal in a Nocturnal Moth.夜蛾中的动态光学信号。
Curr Biol. 2019 Sep 9;29(17):2919-2925.e2. doi: 10.1016/j.cub.2019.07.005. Epub 2019 Aug 8.
3
Thin-film structural coloration from simple fused scales in moths.飞蛾中由简单融合鳞片产生的薄膜结构色
Interface Focus. 2019 Feb 6;9(1):20180044. doi: 10.1098/rsfs.2018.0044. Epub 2018 Dec 14.
6
A Triassic-Jurassic window into the evolution of Lepidoptera.显花植物演化的三叠纪-侏罗纪之窗
Sci Adv. 2018 Jan 10;4(1):e1701568. doi: 10.1126/sciadv.1701568. eCollection 2018 Jan.
8
In situ Raman mapping of art objects.艺术品的原位拉曼光谱映射
Philos Trans A Math Phys Eng Sci. 2016 Dec 13;374(2082). doi: 10.1098/rsta.2016.0039.
10
The springtail cuticle as a blueprint for omniphobic surfaces.跳虫表皮——仿制备战表面。
Chem Soc Rev. 2016 Jan 21;45(2):323-41. doi: 10.1039/c5cs00438a. Epub 2015 Aug 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验