Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
RNA Biol. 2021 Oct 15;18(sup1):303-317. doi: 10.1080/15476286.2021.1943929. Epub 2021 Jul 7.
The mitochondrial genome of the pathogenic yeast displays a typical organization of several (eight) primary transcription units separated by noncoding regions. Presence of genes encoding Complex I subunits and the stability of its mtDNA sequence make it an attractive model to study organellar genome expression using transcriptomic approaches. The main activity responsible for RNA degradation in mitochondria is a two-component complex (mtEXO) consisting of a 3'-5' exoribonuclease, in yeasts encoded by the gene, and a conserved Suv3p helicase. In , deletion of either or gene results in multiple defects in mitochondrial genome expression leading to the loss of respiratory competence. Transcriptomic analysis reveals pervasive transcription in mutants lacking the mtEXO activity, with evidence of the entire genome being transcribed, whereas in wild-type strains no RNAs corresponding to a significant fraction of the noncoding genome can be detected. Antisense ('mirror') transcripts, absent from normal mitochondria are also prominent in the mutants. The expression of multiple mature transcripts, particularly those translated from bicistronic mRNAs, as well as those that contain introns is affected in the mutants, resulting in a decreased level of proteins and reduced respiratory complex activity. The phenotype is most severe in the case of Complex IV, where a decrease of mature COX1 mRNA level to ~5% results in a complete loss of activity. These results show that RNA degradation by mtEXO is essential for shaping the mitochondrial transcriptome and is required to maintain the functional demarcation between transcription units and non-coding genome segments.
致病酵母的线粒体基因组显示出典型的组织,由几个(八个)初级转录单位组成,由非编码区隔开。编码复合物 I 亚基的基因的存在及其 mtDNA 序列的稳定性使其成为使用转录组学方法研究细胞器基因组表达的理想模型。负责线粒体中 RNA 降解的主要活性是由一个双成分复合物(mtEXO)组成的,该复合物由 3'-5'外切核酸酶(在酵母中由 基因编码)和一个保守的 Suv3p 解旋酶组成。在 中,缺失 或 基因会导致线粒体基因组表达的多种缺陷,导致呼吸能力丧失。转录组分析显示,缺乏 mtEXO 活性的突变体中存在广泛的转录,有证据表明整个基因组都在转录,而在野生型菌株中,无法检测到与非编码基因组的显著部分相对应的 RNA。在突变体中也很突出的是不存在于正常线粒体中的反义(“镜像”)转录本。多个成熟转录本的表达,特别是那些从双顺反子 mRNA 翻译而来的转录本,以及那些含有内含子的转录本,在突变体中受到影响,导致蛋白质水平降低和呼吸复合物活性降低。在复合物 IV 的情况下,表型最为严重,成熟 COX1 mRNA 水平下降到~5%,导致活性完全丧失。这些结果表明,mtEXO 的 RNA 降解对于塑造线粒体转录组至关重要,并且需要维持转录单位和非编码基因组片段之间的功能划分。