Suppr超能文献

颌骨单纯性骨囊肿放射组学诊断的初步临床研究。

Primary clinical study of radiomics for diagnosing simple bone cyst of the jaw.

机构信息

Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.

Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

出版信息

Dentomaxillofac Radiol. 2021 Oct 1;50(7):20200384. doi: 10.1259/dmfr.20200384. Epub 2021 Jul 8.

Abstract

OBJECTIVE

To screen the radiomic features of simple bone cysts of the jaws and explore the potential application of radiomics in pre-operative diagnosis of jaw simple bone cysts.

METHODS

The investigators designed and implemented a case-control study. 19 patients with simple bone cysts who were admitted to the Department of Maxillofacial Surgery, Sun Yat-sen University Affiliated Stomatology Hospital from 2013 to 2019 were included in this study. Their clinical data and cone-beam computed tomography (CBCT) images were examined. The control group consisted of patients with odontogenic keratocyst. CBCT imaging features were analyzed and compared between the patient and control groups.

RESULTS

Overall, 10,323 image features were extracted through feature analysis. A subset of 25 radiomic features obtained after feature selection were analyzed further. These 25 features were significantly different between the 2 groups ( < 0.05). The absolute value of correlation coefficient was 0.487-0.775. Gray-level co-occurrence matrix (GLCM) contrast, neighborhood gray tone difference matrix (NGTDM) contrast, and GLCM variance were the features with the highest correlation coefficients.

CONCLUSIONS

Pre-operative radiomics analysis showed the differences between simple bone cysts and odontogenic keratocysts, can help to diagnose simple bone cysts. Three specific texture features-GLCM contrast, NGTDM contrast, and GLCM variance-may be the characteristic imaging features of simple bone cysts of the jaw.

摘要

目的

筛选颌骨单纯性骨囊肿的放射组学特征,并探讨放射组学在颌骨单纯性骨囊肿术前诊断中的潜在应用。

方法

研究者设计并实施了一项病例对照研究。纳入 2013 年至 2019 年中山大学附属口腔医院颌面外科收治的 19 例单纯性骨囊肿患者,收集其临床资料和锥形束 CT(CBCT)图像。对照组为牙源性角化囊肿患者。分析并比较患者组和对照组的 CBCT 影像学特征。

结果

通过特征分析共提取了 10323 个图像特征,经特征选择后进一步分析了 25 个放射组学特征,这些特征在两组间存在显著差异(<0.05)。其相关系数绝对值为 0.487~0.775。灰度共生矩阵(GLCM)对比度、邻域灰度差矩阵(NGTDM)对比度和 GLCM 方差是相关性最高的特征。

结论

术前放射组学分析显示了单纯性骨囊肿和牙源性角化囊肿之间的差异,有助于诊断单纯性骨囊肿。三个特定的纹理特征——GLCM 对比度、NGTDM 对比度和 GLCM 方差——可能是颌骨单纯性骨囊肿的特征性影像学特征。

相似文献

1
Primary clinical study of radiomics for diagnosing simple bone cyst of the jaw.
Dentomaxillofac Radiol. 2021 Oct 1;50(7):20200384. doi: 10.1259/dmfr.20200384. Epub 2021 Jul 8.
2
Radiomics in bone pathology of the jaws.
Dentomaxillofac Radiol. 2023 Jan 1;52(1):20220225. doi: 10.1259/dmfr.20220225. Epub 2022 Nov 23.
4
Using CT texture analysis to differentiate cystic and cystic-appearing odontogenic lesions.
Eur J Radiol. 2019 Nov;120:108654. doi: 10.1016/j.ejrad.2019.108654. Epub 2019 Sep 9.
5
Machine Learning Model Based on Radiomics for Preoperative Differentiation of Jaw Cystic Lesions.
Otolaryngol Head Neck Surg. 2024 Jun;170(6):1561-1569. doi: 10.1002/ohn.744. Epub 2024 Apr 1.
6
Bone Trabecular Pattern Analysis in Odontogenic Cysts Using Cone Beam Computed Tomography: A Clinical Retrospective Study.
Cureus. 2024 Feb 19;16(2):e54452. doi: 10.7759/cureus.54452. eCollection 2024 Feb.
8
Repeatability of CBCT radiomic features and their correlation with CT radiomic features for prostate cancer.
Med Phys. 2021 May;48(5):2386-2399. doi: 10.1002/mp.14787. Epub 2021 Mar 16.
9
Volumetric reduction in large cystic jaw lesions postoperative enucleation: a longitudinal clinical study.
BMC Oral Health. 2023 Sep 13;23(1):660. doi: 10.1186/s12903-023-03307-1.
10
[Clinical application of cone beam CT in the treatment of jaw bone cyst].
Hua Xi Kou Qiang Yi Xue Za Zhi. 2012 Jun;30(3):262-6.

引用本文的文献

2
Differential Diagnosis of OKC and SBC on Panoramic Radiographs: Leveraging Deep Learning Algorithms.
Diagnostics (Basel). 2024 May 30;14(11):1144. doi: 10.3390/diagnostics14111144.
3
Reproducibility and location-stability of radiomic features derived from cone-beam computed tomography: a phantom study.
Dentomaxillofac Radiol. 2023 Nov;52(8):20230180. doi: 10.1259/dmfr.20230180. Epub 2023 Oct 23.
4
Radiomics in bone pathology of the jaws.
Dentomaxillofac Radiol. 2023 Jan 1;52(1):20220225. doi: 10.1259/dmfr.20220225. Epub 2022 Nov 23.
5
Emulating Clinical Diagnostic Reasoning for Jaw Cysts with Machine Learning.
Diagnostics (Basel). 2022 Aug 14;12(8):1968. doi: 10.3390/diagnostics12081968.

本文引用的文献

2
Idiopathic bone cavity of the jaws: an updated analysis of the cases reported in the literature.
Int J Oral Maxillofac Surg. 2019 Jul;48(7):886-894. doi: 10.1016/j.ijom.2019.02.001. Epub 2019 Feb 18.
3
Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm.
J Periodontal Implant Sci. 2018 Apr 30;48(2):114-123. doi: 10.5051/jpis.2018.48.2.114. eCollection 2018 Apr.
4
Assessment of spontaneous resolution of idiopathic bone cavity.
J Appl Oral Sci. 2018;26:e20170288. doi: 10.1590/1678-7757-2017-0288. Epub 2018 May 7.
5
Towards precision medicine: from quantitative imaging to radiomics.
J Zhejiang Univ Sci B. 2018;19(1):6-24. doi: 10.1631/jzus.B1700260.
6
Exploration and validation of radiomics signature as an independent prognostic biomarker in stage III-IVb nasopharyngeal carcinoma.
Oncotarget. 2017 Aug 24;8(43):74869-74879. doi: 10.18632/oncotarget.20423. eCollection 2017 Sep 26.
7
Surgical management of idiopathic bone cavity: case series of consecutive 27 patients.
J Korean Assoc Oral Maxillofac Surg. 2017 Apr;43(2):94-99. doi: 10.5125/jkaoms.2017.43.2.94. Epub 2017 Apr 25.
8
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.
Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验