Suppr超能文献

迈向精准医学:从定量成像到放射组学。

Towards precision medicine: from quantitative imaging to radiomics.

机构信息

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore.

Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore.

出版信息

J Zhejiang Univ Sci B. 2018;19(1):6-24. doi: 10.1631/jzus.B1700260.

Abstract

Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. Radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine.

摘要

放射学(成像)和成像引导介入,提供多参数形态和功能信息,在精准医学中发挥着越来越重要的作用。放射科医生接受过培训,能够理解成像表型,将这些观察结果(表型)转录下来,与潜在疾病相关联,并对图像进行特征描述。然而,为了理解和描述实体异质性肿瘤的分子表型(获得基因组信息),需要对这些组织进行高级测序,采用活检的方式。因此,放射科医生会从各种角度和方位对组织进行成像,以获得完整的图像表型,从而获取大量数据。从所有这些放射学数据中提取有意义的细节变得具有挑战性,并引发了大数据问题。因此,近年来,人们对放射组学应用的兴趣日益浓厚,因为它有可能为决策支持提供有意义的解释和预测信息。放射组学是常规计算机辅助诊断、深度学习方法和人类技能的结合,因此可用于肿瘤表型的定量特征描述。本文讨论了放射组学工作流程的概述,以及使用各种放射图像(如计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射断层扫描(PET))进行的各种放射组学研究的结果、我们所面临的挑战,以及放射组学在精准医学中的潜在贡献。

相似文献

2
The Application of Radiomics in Breast MRI: A Review.放射组学在乳腺磁共振成像中的应用:综述
Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033820916191. doi: 10.1177/1533033820916191.
5
How does Radiomics actually work? - Review.Radiomics 是如何实际运作的?——综述
Rofo. 2021 Jun;193(6):652-657. doi: 10.1055/a-1293-8953. Epub 2020 Dec 2.
7
"Radio-oncomics" : The potential of radiomics in radiation oncology.“放射肿瘤影像学”:放射组学在放射肿瘤学中的潜力
Strahlenther Onkol. 2017 Oct;193(10):767-779. doi: 10.1007/s00066-017-1175-0. Epub 2017 Jul 7.
9
Radiogenomics: bridging imaging and genomics.放射组学:连接影像学与基因组学
Abdom Radiol (NY). 2019 Jun;44(6):1960-1984. doi: 10.1007/s00261-019-02028-w.
10
A deep look into radiomics.深入探讨放射组学。
Radiol Med. 2021 Oct;126(10):1296-1311. doi: 10.1007/s11547-021-01389-x. Epub 2021 Jul 2.

引用本文的文献

本文引用的文献

6
Radiomics: a new application from established techniques.放射组学:既定技术的新应用。
Expert Rev Precis Med Drug Dev. 2016;1(2):207-226. doi: 10.1080/23808993.2016.1164013. Epub 2016 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验