Suppr超能文献

基于噬菌体的 COVID-19 靶向疫苗接种策略的设计和概念验证,具有简化的无冷链供应链。

Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain.

机构信息

Rutgers Cancer Institute of New Jersey, Newark, NJ 07101.

Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103.

出版信息

Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2105739118.

Abstract

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.

摘要

开发针对 2019 年冠状病毒病(COVID-19)的有效疫苗是全球的当务之急。对广泛传播、不断演变且具有高致病性的病毒,对整个人类人口进行快速免疫接种是一项前所未有的挑战,目前正在探索不同的疫苗方法。由于其固有免疫原性、遗传可塑性、稳定性、大规模生产的成本效益以及在人类中已证实的安全性,工程化丝状噬菌体(噬菌体)颗粒在疫苗开发方面具有独特的潜力。在此,我们报告了针对 SARS-CoV-2 的两种靶向噬菌体疫苗接种方法的开发和初步评估:双配体肽靶向噬菌体和腺相关病毒/噬菌体(AAVP)颗粒。对于肽靶向噬菌体,我们进行了结构导向的抗原设计,以选择 SARS-CoV-2 刺突(S)蛋白的六个暴露于溶剂的表位。这些表位之一在噬菌体的主要衣壳蛋白 pVIII 上显示,当在小鼠中注射时会引起特异性和持续的体液反应。这些噬菌体进一步被工程改造,同时在次要衣壳蛋白 pIII 上显示肽 CAKSMGDIVC,以使其能够从肺上皮细胞转运到全身循环。将这些“双显示”噬菌体气溶胶化为小鼠的肺部会引起全身和特异性抗体反应。在第二种方法中,靶向的 AAVP 颗粒被工程改造,使其在组成型 CMV 启动子的控制下递送整个 S 蛋白基因。这会诱导组织特异性转基因表达,在小鼠中刺激全身 S 蛋白特异性抗体反应。通过这些概念验证的临床前实验,我们表明靶向噬菌体和 AAVP 基颗粒均可以作为强大而灵活的平台,能够迅速产生 COVID-19 疫苗原型,以进行转化开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7438/8325333/df373664a29b/pnas.2105739118fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验