Lara-Rodarte Rolando, Cortés Daniel, Soriano Karla, Carmona Francia, Rocha Luisa, Estudillo Enrique, López-Ornelas Adolfo, Velasco Iván
Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez," Mexico City, Mexico.
Front Cell Dev Biol. 2021 Jun 22;9:661656. doi: 10.3389/fcell.2021.661656. eCollection 2021.
Parkinson's disease (PD) is characterized by the progressive loss of midbrain dopaminergic neurons (DaNs) of the and the decrease of dopamine in the brain. Grafting DaN differentiated from embryonic stem cells (ESCs) has been proposed as an alternative therapy for current pharmacological treatments. Intrastriatal grafting of such DaNs differentiated from mouse or human ESCs improves motor performance, restores DA release, and suppresses dopamine receptor super-sensitivity. However, a low percentage of grafted neurons survive in the brain. Glial cell line-derived neurotrophic factor (GDNF) is a strong survival factor for DaNs. GDNF has proved to be neurotrophic for DaNs and , and induces axonal sprouting and maturation. Here, we engineered mouse ESCs to constitutively produce human GDNF, to analyze DaN differentiation and the possible neuroprotection by transgenic GDNF after toxic challenges , or after grafting differentiated DaNs into the striatum of Parkinsonian rats. GDNF overexpression throughout differentiation of mouse ESCs increases the proportion of midbrain DaNs. These transgenic cells were less sensitive than control cells to 6-hydroxydopamine . After grafting control or GDNF transgenic DaNs in hemi-Parkinsonian rats, we observed significant recoveries in both pharmacological and non-pharmacological behavioral tests, as well as increased striatal DA release, indicating that DaNs are functional in the brain. The graft volume, the number of surviving neurons, the number of DaNs present in the striatum, and the proportion of DaNs in the grafts were significantly higher in rats transplanted with GDNF-expressing cells, when compared to control cells. Interestingly, no morphological alterations in the brain of rats were found after grafting of GDNF-expressing cells. This approach is novel, because previous works have use co-grafting of DaNs with other cell types that express GDNF, or viral transduction in the host tissue before or after grafting of DaNs. In conclusion, GDNF production by mouse ESCs contributes to enhanced midbrain differentiation and permits a higher number of surviving DaNs after a 6-hydroxydopamine challenge , as well as post-grafting in the lesioned striatum. These GDNF-expressing ESCs can be useful to improve neuronal survival after transplantation.
帕金森病(PD)的特征是中脑多巴胺能神经元(DaNs)逐渐丧失以及脑内多巴胺水平降低。将胚胎干细胞(ESCs)分化而来的DaN进行移植已被提议作为当前药物治疗的替代疗法。将从小鼠或人类ESCs分化而来的此类DaN进行纹状体内移植可改善运动性能、恢复多巴胺释放并抑制多巴胺受体超敏反应。然而,移植的神经元在脑内存活的比例较低。胶质细胞系源性神经营养因子(GDNF)是DaNs的一种强大的存活因子。GDNF已被证明对中脑腹侧被盖区(VTA)和黑质致密部(SNc)的DaNs具有神经营养作用,并能诱导轴突发芽和成熟。在此,我们对小鼠ESCs进行基因工程改造,使其组成性地产生人GDNF,以分析DaN的分化情况以及转基因GDNF在毒性刺激后或在将分化的DaN移植到帕金森病大鼠纹状体后可能提供的神经保护作用。在小鼠ESCs的整个分化过程中GDNF的过表达增加了中脑DaNs的比例。这些转基因细胞对6-羟基多巴胺(6-OHDA)的敏感性低于对照细胞。在将对照或GDNF转基因DaN移植到半侧帕金森病大鼠后,我们在药理学和非药理学行为测试中均观察到显著恢复,同时纹状体多巴胺释放增加,表明移植的DaN在脑内发挥了功能。与对照细胞相比,移植表达GDNF细胞的大鼠的移植体积、存活神经元数量、纹状体内存在的DaN数量以及移植中DaN的比例均显著更高。有趣的是,移植表达GDNF的细胞后未在大鼠脑内发现形态学改变。这种方法是新颖的,因为先前的研究采用将DaN与其他表达GDNF的细胞类型共移植,或在DaN移植之前或之后在宿主组织中进行病毒转导。总之,小鼠ESCs产生GDNF有助于增强中脑分化,并在6-OHDA刺激后以及移植到受损纹状体后允许更多存活的DaN,这些表达GDNF的ESCs可有助于提高移植后神经元的存活率。