Suppr超能文献

Notch信号通路在主动脉瓣发育及钙化性主动脉瓣疾病中的作用

NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease.

作者信息

Wang Yidong, Fang Yuan, Lu Pengfei, Wu Bingruo, Zhou Bin

机构信息

The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.

Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States.

出版信息

Front Cardiovasc Med. 2021 Jun 22;8:682298. doi: 10.3389/fcvm.2021.682298. eCollection 2021.

Abstract

NOTCH intercellular signaling mediates the communications between adjacent cells involved in multiple biological processes essential for tissue morphogenesis and homeostasis. The mutations are the first identified human genetic variants that cause congenital bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). Genetic variants affecting other genes in the NOTCH signaling pathway may also contribute to the development of BAV and the pathogenesis of CAVD. While CAVD occurs commonly in the elderly population with tri-leaflet aortic valve, patients with BAV have a high risk of developing CAVD at a young age. This observation indicates an important role of NOTCH signaling in the postnatal homeostasis of the aortic valve, in addition to its prenatal functions during aortic valve development. Over the last decade, animal studies, especially with the mouse models, have revealed detailed information in the developmental etiology of congenital aortic valve defects. In this review, we will discuss the molecular and cellular aspects of aortic valve development and examine the embryonic pathogenesis of BAV. We will focus our discussions on the NOTCH signaling during the endocardial-to-mesenchymal transformation (EMT) and the post-EMT remodeling of the aortic valve. We will further examine the involvement of the NOTCH mutations in the postnatal development of CAVD. We will emphasize the deleterious impact of the embryonic valve defects on the homeostatic mechanisms of the adult aortic valve for the purpose of identifying the potential therapeutic targets for disease intervention.

摘要

NOTCH细胞间信号传导介导相邻细胞间的通讯,这些通讯参与了组织形态发生和内稳态所必需的多个生物学过程。这些突变是首次鉴定出的导致先天性二叶主动脉瓣(BAV)和钙化性主动脉瓣疾病(CAVD)的人类遗传变异。影响NOTCH信号通路中其他基因的遗传变异也可能促成BAV的发生和CAVD的发病机制。虽然CAVD常见于具有三叶主动脉瓣的老年人群,但BAV患者在年轻时发生CAVD的风险很高。这一观察结果表明,NOTCH信号除了在主动脉瓣发育的产前功能外,在主动脉瓣出生后的内稳态中也起着重要作用。在过去十年中,动物研究,尤其是小鼠模型研究,已经揭示了先天性主动脉瓣缺陷发育病因的详细信息。在这篇综述中,我们将讨论主动脉瓣发育的分子和细胞方面,并研究BAV的胚胎发病机制。我们将重点讨论心内膜-间充质转化(EMT)期间以及主动脉瓣EMT后重塑过程中的NOTCH信号。我们还将进一步研究NOTCH突变在CAVD出生后发育中的作用。为了确定疾病干预的潜在治疗靶点,我们将强调胚胎瓣膜缺陷对成人主动脉瓣内稳态机制的有害影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/824d/8259786/a34cae5de042/fcvm-08-682298-g0001.jpg

相似文献

1
NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease.
Front Cardiovasc Med. 2021 Jun 22;8:682298. doi: 10.3389/fcvm.2021.682298. eCollection 2021.
2
Embryonic development of bicuspid aortic valves.
Prog Cardiovasc Dis. 2020 Jul-Aug;63(4):407-418. doi: 10.1016/j.pcad.2020.06.008. Epub 2020 Jun 25.
3
Genetic basis of aortic valvular disease.
Curr Opin Cardiol. 2017 May;32(3):239-245. doi: 10.1097/HCO.0000000000000384.
4
Developmental Mechanisms of Aortic Valve Malformation and Disease.
Annu Rev Physiol. 2017 Feb 10;79:21-41. doi: 10.1146/annurev-physiol-022516-034001. Epub 2016 Dec 9.
6
Differential BMP Signaling Mediates the Interplay Between Genetics and Leaflet Numbers in Aortic Valve Calcification.
JACC Basic Transl Sci. 2022 Mar 23;7(4):333-345. doi: 10.1016/j.jacbts.2021.12.006. eCollection 2022 Apr.
9
Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease.
Biomech Model Mechanobiol. 2012 Sep;11(7):1085-96. doi: 10.1007/s10237-012-0375-x.

引用本文的文献

1
Analysis of cellular senescence-related genes in calcified aortic valve disease and the potential therapeutic role of β-Carotene.
PLoS One. 2025 Mar 10;20(3):e0318574. doi: 10.1371/journal.pone.0318574. eCollection 2025.
2
Advances in Pathophysiological Mechanisms of Degenerative Aortic Valve Disease.
Cardiol Res. 2025 Apr;16(2):86-101. doi: 10.14740/cr2012. Epub 2025 Feb 18.
4
The Role of NOTCH Pathway Genes in the Inherited Susceptibility to Aortic Stenosis.
J Cardiovasc Dev Dis. 2024 Jul 17;11(7):226. doi: 10.3390/jcdd11070226.
5
Human Genetics of Semilunar Valve and Aortic Arch Anomalies.
Adv Exp Med Biol. 2024;1441:761-775. doi: 10.1007/978-3-031-44087-8_45.
6
Insights into calcific aortic valve stenosis: a comprehensive overview of the disease and advancing treatment strategies.
Ann Med Surg (Lond). 2024 Apr 29;86(6):3577-3590. doi: 10.1097/MS9.0000000000002106. eCollection 2024 Jun.
8
Focusing on the Native Matrix Proteins in Calcific Aortic Valve Stenosis.
JACC Basic Transl Sci. 2023 Mar 29;8(8):1028-1039. doi: 10.1016/j.jacbts.2023.01.009. eCollection 2023 Aug.
9
β-Catenin regulates endocardial cushion growth by suppressing p21.
Life Sci Alliance. 2023 Jun 29;6(9). doi: 10.26508/lsa.202302163. Print 2023 Sep.

本文引用的文献

1
Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling.
Sci Adv. 2021 Feb 5;7(6). doi: 10.1126/sciadv.abe3706. Print 2021 Feb.
2
Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease.
Science. 2021 Feb 12;371(6530). doi: 10.1126/science.abd0724. Epub 2020 Dec 10.
3
Bicuspid Aortic Valve and Endothelial Dysfunction: Current Evidence and Potential Therapeutic Targets.
Front Physiol. 2020 Aug 21;11:1015. doi: 10.3389/fphys.2020.01015. eCollection 2020.
4
Genetics in bicuspid aortic valve disease: Where are we?
Prog Cardiovasc Dis. 2020 Jul-Aug;63(4):398-406. doi: 10.1016/j.pcad.2020.06.005. Epub 2020 Jun 27.
5
Embryonic development of bicuspid aortic valves.
Prog Cardiovasc Dis. 2020 Jul-Aug;63(4):407-418. doi: 10.1016/j.pcad.2020.06.008. Epub 2020 Jun 25.
7
Development of calcific aortic valve disease: Do we know enough for new clinical trials?
J Mol Cell Cardiol. 2019 Jul;132:189-209. doi: 10.1016/j.yjmcc.2019.05.016. Epub 2019 May 25.
8
Chronic inflammation: A key role in degeneration of bicuspid aortic valve.
J Mol Cell Cardiol. 2019 May;130:59-64. doi: 10.1016/j.yjmcc.2019.03.013. Epub 2019 Mar 15.
9
Endothelial Notch1 in Pulmonary Hypertension.
Circ Res. 2019 Jan 18;124(2):176-179. doi: 10.1161/CIRCRESAHA.118.314496.
10
The Genetic Regulation of Aortic Valve Development and Calcific Disease.
Front Cardiovasc Med. 2018 Nov 6;5:162. doi: 10.3389/fcvm.2018.00162. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验