Suppr超能文献

基于网络的 iPSC 衍生细胞筛选揭示了心脏瓣膜疾病的治疗候选药物。

Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease.

机构信息

Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.

Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA.

出版信息

Science. 2021 Feb 12;371(6530). doi: 10.1126/science.abd0724. Epub 2020 Dec 10.

Abstract

Mapping the gene-regulatory networks dysregulated in human disease would allow the design of network-correcting therapies that treat the core disease mechanism. However, small molecules are traditionally screened for their effects on one to several outputs at most, biasing discovery and limiting the likelihood of true disease-modifying drug candidates. Here, we developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell (iPSC) disease model of a common form of heart disease involving the aortic valve (AV). Gene network correction by the most efficacious therapeutic candidate, XCT790, generalized to patient-derived primary AV cells and was sufficient to prevent and treat AV disease in vivo in a mouse model. This strategy, made feasible by human iPSC technology, network analysis, and machine learning, may represent an effective path for drug discovery.

摘要

绘制人类疾病中失调的基因调控网络图谱,将有助于设计出针对核心疾病机制的网络校正疗法。然而,传统上,小分子药物的筛选最多只能针对一到几个靶点的效果,这会导致发现的偏倚,并限制真正的疾病修正药物候选物的可能性。在这里,我们开发了一种机器学习方法来识别能够广泛纠正人类诱导多能干细胞(iPSC)疾病模型中与涉及主动脉瓣(AV)的常见心脏病形式相关的基因网络失调的小分子药物。最有效的治疗候选药物 XCT790 的基因网络校正作用可推广到患者来源的原发性 AV 细胞,并足以在体内预防和治疗小鼠模型中的 AV 疾病。这种策略,通过人类 iPSC 技术、网络分析和机器学习成为可能,可能代表了一种有效的药物发现途径。

相似文献

1
Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease.
Science. 2021 Feb 12;371(6530). doi: 10.1126/science.abd0724. Epub 2020 Dec 10.
2
Calcific aortic valve disease: turning therapeutic discovery up a notch.
Nat Rev Cardiol. 2021 May;18(5):309-310. doi: 10.1038/s41569-021-00528-1.
7
Transcriptional Profiling of Normal, Stenotic, and Regurgitant Human Aortic Valves.
Genes (Basel). 2020 Jul 14;11(7):789. doi: 10.3390/genes11070789.
8
Clinically used JAK inhibitor blunts dsRNA-induced inflammation and calcification in aortic valve interstitial cells.
FEBS J. 2021 Nov;288(22):6528-6542. doi: 10.1111/febs.16026. Epub 2021 Jun 25.
9
Macrophages Promote Aortic Valve Cell Calcification and Alter STAT3 Splicing.
Arterioscler Thromb Vasc Biol. 2020 Jun;40(6):e153-e165. doi: 10.1161/ATVBAHA.120.314360. Epub 2020 Apr 16.
10
Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1.
Circulation. 2016 Dec 6;134(23):1848-1862. doi: 10.1161/CIRCULATIONAHA.116.023116. Epub 2016 Oct 27.

引用本文的文献

3
Inflammation and Adipocyte Metabolism in Calcific Aortic Valve Stenosis: When New Is Well-Forgotten Old.
JACC Basic Transl Sci. 2025 Jun;10(6):742-744. doi: 10.1016/j.jacbts.2025.03.016.
4
An overview on cardiac regeneration revolution: exploring the promise of stem cell therapies.
Mol Biol Rep. 2025 May 28;52(1):511. doi: 10.1007/s11033-025-10580-6.
5
Coronary microcirculation dysfunction causing ischemia with non-obstructive coronary arteries: a case report.
Front Cardiovasc Med. 2025 Apr 15;12:1556064. doi: 10.3389/fcvm.2025.1556064. eCollection 2025.
8
Cell reprogramming: methods, mechanisms and applications.
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.
10
Bayesian estimation of muscle mechanisms and therapeutic targets using variational autoencoders.
Biophys J. 2025 Jan 7;124(1):179-191. doi: 10.1016/j.bpj.2024.11.3310. Epub 2024 Nov 26.

本文引用的文献

1
Drug and disease signature integration identifies synergistic combinations in glioblastoma.
Nat Commun. 2018 Dec 14;9(1):5315. doi: 10.1038/s41467-018-07659-z.
2
Echocardiographic Follow-Up of Congenital Aortic Valvular Stenosis II.
Pediatr Cardiol. 2018 Dec;39(8):1547-1553. doi: 10.1007/s00246-018-1928-2. Epub 2018 Jul 6.
3
A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.
Cell. 2017 Nov 30;171(6):1437-1452.e17. doi: 10.1016/j.cell.2017.10.049.
4
Targeting Cadherin-11 Prevents Notch1-Mediated Calcific Aortic Valve Disease.
Circulation. 2017 Jun 13;135(24):2448-2450. doi: 10.1161/CIRCULATIONAHA.117.027771.
5
Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency.
J Clin Invest. 2017 May 1;127(5):1683-1688. doi: 10.1172/JCI90338. Epub 2017 Mar 27.
6
Effects of Raloxifene on the Proliferation and Apoptosis of Human Aortic Valve Interstitial Cells.
Biomed Res Int. 2016;2016:5473204. doi: 10.1155/2016/5473204. Epub 2016 Nov 23.
7
Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1.
Circulation. 2016 Dec 6;134(23):1848-1862. doi: 10.1161/CIRCULATIONAHA.116.023116. Epub 2016 Oct 27.
9
The epidermal growth factor receptor and its ligands in cardiovascular disease.
Int J Mol Sci. 2013 Oct 15;14(10):20597-613. doi: 10.3390/ijms141020597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验