Suppr超能文献

在精准医学中,为了随机试验的惩罚生存模型,赞成层次约束。

Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine.

机构信息

Université Paris-Saclay, CESP, INSERM U1018 Oncostat, labeled Ligue Contre le Cancer, Villejuif, France.

Bureau de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France.

出版信息

BMC Bioinformatics. 2023 Mar 16;24(1):96. doi: 10.1186/s12859-023-05162-x.

Abstract

BACKGROUND

The research of biomarker-treatment interactions is commonly investigated in randomized clinical trials (RCT) for improving medicine precision. The hierarchical interaction constraint states that an interaction should only be in a model if its main effects are also in the model. However, this constraint is not guaranteed in the standard penalized statistical approaches. We aimed to find a compromise for high-dimensional data between the need for sparse model selection and the need for the hierarchical constraint.

RESULTS

To favor the property of the hierarchical interaction constraint, we proposed to create groups composed of the biomarker main effect and its interaction with treatment and to perform the bi-level selection on these groups. We proposed two weighting approaches (Single Wald (SW) and likelihood ratio test (LRT)) for the adaptive lasso method. The selection performance of these two approaches is compared to alternative lasso extensions (adaptive lasso with ridge-based weights, composite Minimax Concave Penalty, group exponential lasso and Sparse Group Lasso) through a simulation study. A RCT (NSABP B-31) randomizing 1574 patients (431 events) with early breast cancer aiming to evaluate the effect of adjuvant trastuzumab on distant-recurrence free survival with expression data from 462 genes measured in the tumour will serve for illustration. The simulation study illustrates that the adaptive lasso LRT and SW, and the group exponential lasso favored the hierarchical interaction constraint. Overall, in the alternative scenarios, they had the best balance of false discovery and false negative rates for the main effects of the selected interactions. For NSABP B-31, 12 gene-treatment interactions were identified more than 20% by the different methods. Among them, the adaptive lasso (SW) approach offered the best trade-off between a high number of selected gene-treatment interactions and a high proportion of selection of both the gene-treatment interaction and its main effect.

CONCLUSIONS

Adaptive lasso with Single Wald and likelihood ratio test weighting and the group exponential lasso approaches outperformed their competitors in favoring the hierarchical constraint of the biomarker-treatment interaction. However, the performance of the methods tends to decrease in the presence of prognostic biomarkers.

摘要

背景

生物标志物-治疗相互作用的研究通常在随机临床试验 (RCT) 中进行,以提高医学精准度。分层交互约束规定,只有当交互作用的主效应也在模型中时,才应在模型中进行交互作用。然而,在标准惩罚统计方法中,这一约束并不成立。我们旨在为高维数据找到一种折衷方案,即在稀疏模型选择的需求和分层约束的需求之间找到一种折衷方案。

结果

为了有利于分层交互约束的性质,我们提出创建由生物标志物主效应及其与治疗的交互作用组成的组,并对这些组进行双水平选择。我们为自适应套索方法提出了两种加权方法(单 Wald (SW) 和似然比检验 (LRT))。通过模拟研究,将这两种方法的选择性能与其他套索扩展方法(基于岭的权重的自适应套索、复合最小最大凹惩罚、组指数套索和稀疏组套索)进行了比较。一项针对 1574 例早期乳腺癌患者(431 例事件)的随机 RCT(NSABP B-31)旨在评估辅助曲妥珠单抗对无远处复发生存率的影响,该研究使用肿瘤中测量的 462 个基因的表达数据,将用于说明。模拟研究表明,自适应套索 LRT 和 SW 以及组指数套索有利于分层交互约束。总体而言,在替代方案中,它们对所选交互作用的主效应的假发现率和假阴性率具有最佳的平衡。对于 NSABP B-31,不同方法鉴定了 12 个基因-治疗相互作用,超过 20%。其中,自适应套索(SW)方法在选择基因-治疗相互作用的数量较多和选择基因-治疗相互作用及其主效应的比例较高之间提供了最佳的折衷方案。

结论

自适应套索与单 Wald 和似然比检验加权和组指数套索方法在有利于生物标志物-治疗相互作用的分层约束方面优于其竞争对手。然而,在存在预后生物标志物的情况下,这些方法的性能往往会下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7a/10022294/21912b622a7a/12859_2023_5162_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验