Suppr超能文献

在具有生存结局和高维空间的随机临床试验中识别生物标志物与治疗的相互作用。

Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces.

作者信息

Ternès Nils, Rotolo Federico, Heinze Georg, Michiels Stefan

机构信息

INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, F-94805, France.

Gustave Roussy, Paris-Saclay, Service de Biostatistique et d'Epidémiologie, Villejuif, F-94805, France.

出版信息

Biom J. 2017 Jul;59(4):685-701. doi: 10.1002/bimj.201500234. Epub 2016 Nov 15.

Abstract

Stratified medicine seeks to identify biomarkers or parsimonious gene signatures distinguishing patients that will benefit most from a targeted treatment. We evaluated 12 approaches in high-dimensional Cox models in randomized clinical trials: penalization of the biomarker main effects and biomarker-by-treatment interactions (full-lasso, three kinds of adaptive lasso, ridge+lasso and group-lasso); dimensionality reduction of the main effect matrix via linear combinations (PCA+lasso (where PCA is principal components analysis) or PLS+lasso (where PLS is partial least squares)); penalization of modified covariates or of the arm-specific biomarker effects (two-I model); gradient boosting; and univariate approach with control of multiple testing. We compared these methods via simulations, evaluating their selection abilities in null and alternative scenarios. We varied the number of biomarkers, of nonnull main effects and true biomarker-by-treatment interactions. We also proposed a novel measure evaluating the interaction strength of the developed gene signatures. In the null scenarios, the group-lasso, two-I model, and gradient boosting performed poorly in the presence of nonnull main effects, and performed well in alternative scenarios with also high interaction strength. The adaptive lasso with grouped weights was too conservative. The modified covariates, PCA+lasso, PLS+lasso, and ridge+lasso performed moderately. The full-lasso and adaptive lassos performed well, with the exception of the full-lasso in the presence of only nonnull main effects. The univariate approach performed poorly in alternative scenarios. We also illustrate the methods using gene expression data from 614 breast cancer patients treated with adjuvant chemotherapy.

摘要

分层医学旨在识别生物标志物或简洁的基因特征,以区分哪些患者将从靶向治疗中获益最多。我们在随机临床试验的高维Cox模型中评估了12种方法:对生物标志物主效应和生物标志物与治疗相互作用进行惩罚(全套索、三种自适应套索、岭回归+套索和组套索);通过线性组合对主效应矩阵进行降维(主成分分析+套索(其中主成分分析为PCA)或偏最小二乘法+套索(其中偏最小二乘法为PLS));对修正协变量或特定组生物标志物效应进行惩罚(双I模型);梯度提升;以及控制多重检验的单变量方法。我们通过模拟比较了这些方法,评估它们在零假设和备择假设情景下的选择能力。我们改变了生物标志物的数量、非零主效应的数量以及真实的生物标志物与治疗相互作用。我们还提出了一种评估所开发基因特征相互作用强度的新方法。在零假设情景下,组套索、双I模型和梯度提升在存在非零主效应时表现不佳,而在具有高相互作用强度的备择假设情景下表现良好。具有分组权重的自适应套索过于保守。修正协变量、主成分分析+套索、偏最小二乘法+套索和岭回归+套索表现适中。全套索和自适应套索表现良好,唯一例外的是在仅存在非零主效应时的全套索。单变量方法在备择假设情景下表现不佳。我们还使用614例接受辅助化疗的乳腺癌患者的基因表达数据对这些方法进行了说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6e5/5763402/fae26a946dc6/BIMJ-59-685-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验