Das Shubhankar, Ross A, Ma X X, Becker S, Schmitt C, van Duijn F, Galindez-Ruales E F, Fuhrmann F, Syskaki M-A, Ebels U, Baltz V, Barra A-L, Chen H Y, Jakob G, Cao S X, Sinova J, Gomonay O, Lebrun R, Kläui M
Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128, Mainz, Germany.
Unité Mixte de Physique CNRS, Thales, Université Paris-Saclay, Palaiseau, 91767, France.
Nat Commun. 2022 Oct 17;13(1):6140. doi: 10.1038/s41467-022-33520-5.
In antiferromagnets, the efficient transport of spin-waves has until now only been observed in the insulating antiferromagnet hematite, where circularly (or a superposition of pairs of linearly) polarized spin-waves diffuse over long distances. Here, we report long-distance spin-transport in the antiferromagnetic orthoferrite YFeO, where a different transport mechanism is enabled by the combined presence of the Dzyaloshinskii-Moriya interaction and externally applied fields. The magnon decay length is shown to exceed hundreds of nanometers, in line with resonance measurements that highlight the low magnetic damping. We observe a strong anisotropy in the magnon decay lengths that we can attribute to the role of the magnon group velocity in the transport of spin-waves in antiferromagnets. This unique mode of transport identified in YFeO opens up the possibility of a large and technologically relevant class of materials, i.e., canted antiferromagnets, for long-distance spin transport.
在反铁磁体中,自旋波的高效传输迄今仅在绝缘反铁磁体赤铁矿中被观测到,在那里,圆偏振(或线性偏振对的叠加)自旋波能在长距离上扩散。在此,我们报道了反铁磁正铁氧体YFeO中的长距离自旋传输,其中,Dzyaloshinskii-Moriya相互作用和外加磁场的共同存在促成了一种不同的传输机制。磁振子衰减长度被证明超过数百纳米,这与突出低磁阻尼的共振测量结果一致。我们观察到磁振子衰减长度存在强烈的各向异性,我们将其归因于磁振子群速度在反铁磁体中自旋波传输中的作用。在YFeO中识别出的这种独特传输模式为一大类与技术相关的材料,即倾斜反铁磁体,用于长距离自旋传输开辟了可能性。