Suppr超能文献

反铁磁体中的压电应变控制磁振子自旋电流输运

Piezoelectric Strain-Controlled Magnon Spin Current Transport in an Antiferromagnet.

作者信息

Zhou Yongjian, Guo Tingwen, Qiao Leilei, Wang Qian, Zhu Meng, Zhang Jia, Liu Quan, Zhao Mingkun, Wan Caihua, He Wenqing, Bai Hua, Han Lei, Huang Lin, Chen Ruyi, Zhao Yonggang, Han Xiufeng, Pan Feng, Song Cheng

机构信息

Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Nano Lett. 2022 Jun 22;22(12):4646-4653. doi: 10.1021/acs.nanolett.2c00405. Epub 2022 May 18.

Abstract

As the core of spintronics, the transport of spin aims at a low-dissipation data process. The pure spin current transmission carried by magnons in antiferromagnetic insulators is natively endowed with superiority such as long-distance propagation and ultrafast speed. However, the traditional control of magnon transport in an antiferromagnet via a magnetic field or temperature variation adds critical inconvenience to practical applications. Controlling magnon transport by electric methods is a promising way to overcome such embarrassment and to promote the development of energy-efficient antiferromagnetic logic. Here, the experimental realization of an electric field-induced piezoelectric strain-controlled magnon spin current transmission through the antiferromagnetic insulator in the YFeO/CrO/Pt trilayer is reported. An efficient and nonvolatile manipulation of magnon propagation/blocking is achieved by changing the relative direction between the Néel vector and spin polarization, which is tuned by ferroelastic strain from the piezoelectric substrate. The piezoelectric strain-controlled antiferromagnetic magnon transport opens an avenue for the exploitation of antiferromagnet-based spin/magnon transistors with ultrahigh energy efficiency.

摘要

作为自旋电子学的核心,自旋输运旨在实现低耗散的数据处理。反铁磁绝缘体中磁振子所携带的纯自旋电流传输天生具有长距离传播和超快速度等优势。然而,传统上通过磁场或温度变化来控制反铁磁体中的磁振子输运给实际应用带来了极大不便。通过电学方法控制磁振子输运是克服这一困境并推动节能反铁磁逻辑发展的一种有前途的方式。在此,报道了通过电场诱导的压电应变控制磁振子自旋电流在YFeO/CrO/Pt三层结构的反铁磁绝缘体中传输的实验实现。通过改变奈尔矢量与自旋极化之间的相对方向,实现了对磁振子传播/阻挡的高效且非易失性操控,该相对方向由压电衬底的铁弹性应变调节。压电应变控制的反铁磁磁振子输运为开发具有超高能量效率的基于反铁磁体的自旋/磁振子晶体管开辟了一条途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验