Kersell Heath, Chen Pengyuan, Martins Henrique, Lu Qiyang, Brausse Felix, Liu Bo-Hong, Blum Monika, Roy Sujoy, Rude Bruce, Kilcoyne Arthur, Bluhm Hendrik, Nemšák Slavomír
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA.
Rev Sci Instrum. 2021 Apr 1;92(4):044102. doi: 10.1063/5.0044162.
We have developed an experimental system to simultaneously measure surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring x-ray photoelectron spectroscopy (XPS) and grazing incidence x-ray scattering in gas pressures as high as the multi-Torr regime while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano-scale to the meso-scale, and the grazing incidence geometry provides tunable depth sensitivity of structural measurements. Scattered x rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and under ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between the structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent x-ray scattering experiments can greatly benefit from the concepts we present here.
我们开发了一种实验系统,用于同时测量气相环境中样品的表面结构、形态、成分、化学状态和化学活性。这是通过在高达多托(multi-Torr)压力的气相环境中同时测量X射线光电子能谱(XPS)和掠入射X射线散射,并记录质谱来实现的。散射图案反映了从纳米尺度到中尺度的近表面样品结构,掠入射几何结构提供了结构测量的可调深度灵敏度。使用新设计的用于探测器定位的旋转超高真空操纵器,在很宽的角度范围内检测散射的X射线。同时,可以在相同的样品点和环境条件下测量XPS和质谱。为了展示该系统的功能,我们测量了真空和不同温度的O气氛中,硅(001)晶片上的山嵛酸银的化学状态、成分和结构。这些同时进行的结构、化学和气相产物探测,能够深入了解气相环境中样品的结构与化学状态之间的相互作用。我们的旋转超高真空操纵器体积紧凑,使得将该技术改装到安装在同步加速器光束线上的现有光谱仪器中成为可能。由于许多同步加速器设施正在规划或正在升级到具有横向相干光束的衍射极限储存环,一组新出现的相干X射线散射实验可以从我们这里提出的概念中大大受益。