Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Science. 2021 Jul 9;373(6551):213-216. doi: 10.1126/science.abd7726.
The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a material class that mirrors the cuprate superconductors. We measured the magnetic excitations in these nickelates using resonant inelastic x-ray scattering at the Ni -edge. Undoped NdNiO possesses a branch of dispersive excitations with a bandwidth of approximately 200 milli-electron volts, which is reminiscent of the spin wave of strongly coupled, antiferromagnetically aligned spins on a square lattice. The substantial damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, whereas the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates.
无限层镍酸盐中超导性的发现使我们几乎可以接触到一类与铜酸盐超导体相媲美的材料。我们使用 Ni 边缘的共振非弹性 X 射线散射测量了这些镍酸盐中的磁激发。未掺杂的 NdNiO 具有一个具有约 200 毫电子伏特带宽的色散激发分支,这让人想起在正方形晶格上强烈耦合的反铁磁排列的自旋的自旋波。这些模式的显著阻尼表明与稀土巡游电子的耦合的重要性。掺杂后,光谱权重和能量略有下降,而模式变得过阻尼。我们的结果强调了无限层镍酸盐中莫特性的作用。