基于视觉Transformer 的乳腺 MRI 中纤维腺体组织分割:多机构评估。
Fibroglandular tissue segmentation in breast MRI using vision transformers: a multi-institutional evaluation.
机构信息
Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany.
Else Kroener Fresenius Center for Digital Health, Technical University, Dresden, Germany.
出版信息
Sci Rep. 2023 Aug 30;13(1):14207. doi: 10.1038/s41598-023-41331-x.
Accurate and automatic segmentation of fibroglandular tissue in breast MRI screening is essential for the quantification of breast density and background parenchymal enhancement. In this retrospective study, we developed and evaluated a transformer-based neural network for breast segmentation (TraBS) in multi-institutional MRI data, and compared its performance to the well established convolutional neural network nnUNet. TraBS and nnUNet were trained and tested on 200 internal and 40 external breast MRI examinations using manual segmentations generated by experienced human readers. Segmentation performance was assessed in terms of the Dice score and the average symmetric surface distance. The Dice score for nnUNet was lower than for TraBS on the internal testset (0.909 ± 0.069 versus 0.916 ± 0.067, P < 0.001) and on the external testset (0.824 ± 0.144 versus 0.864 ± 0.081, P = 0.004). Moreover, the average symmetric surface distance was higher (= worse) for nnUNet than for TraBS on the internal (0.657 ± 2.856 versus 0.548 ± 2.195, P = 0.001) and on the external testset (0.727 ± 0.620 versus 0.584 ± 0.413, P = 0.03). Our study demonstrates that transformer-based networks improve the quality of fibroglandular tissue segmentation in breast MRI compared to convolutional-based models like nnUNet. These findings might help to enhance the accuracy of breast density and parenchymal enhancement quantification in breast MRI screening.
在乳腺 MRI 筛查中,准确且自动地分割纤维腺体组织对于乳腺密度和背景实质增强的定量分析至关重要。在这项回顾性研究中,我们开发并评估了一种基于 Transformer 的神经网络(TraBS),用于对多机构 MRI 数据进行乳腺分割,并将其性能与成熟的卷积神经网络 nnUNet 进行比较。TraBS 和 nnUNet 是在 200 个内部和 40 个外部乳腺 MRI 检查中使用经验丰富的人工读者生成的手动分割进行训练和测试的。分割性能是根据 Dice 评分和平均对称表面距离来评估的。nnUNet 在内部测试集上的 Dice 评分低于 TraBS(0.909±0.069 与 0.916±0.067,P<0.001),在外部测试集上的 Dice 评分也低于 TraBS(0.824±0.144 与 0.864±0.081,P=0.004)。此外,nnUNet 在内部(0.657±2.856 与 0.548±2.195,P=0.001)和外部测试集(0.727±0.620 与 0.584±0.413,P=0.03)上的平均对称表面距离都高于 TraBS,这意味着 nnUNet 的分割结果更差。我们的研究表明,与基于卷积的模型(如 nnUNet)相比,基于 Transformer 的网络可以提高乳腺 MRI 中纤维腺体组织分割的质量。这些发现可能有助于提高乳腺 MRI 筛查中乳腺密度和实质增强定量分析的准确性。