Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland.
Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.
Osteoarthritis Cartilage. 2021 Oct;29(10):1432-1447. doi: 10.1016/j.joca.2021.06.011. Epub 2021 Jul 8.
To assess the ability of imaging-based deep learning to detect radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs.
Knee lateral view radiographs were extracted from The Multicenter Osteoarthritis Study (MOST) public use datasets (n = 18,436 knees). Patellar region-of-interest (ROI) was first automatically detected, and subsequently, end-to-end deep convolutional neural networks (CNNs) were trained and validated to detect the status of patellofemoral OA. Patellar ROI was detected using deep-learning-based object detection method. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of classification models was assessed using the area under the receiver operating characteristic curve (ROC AUC) and the average precision (AP) obtained from the Precision-Recall (PR) curve in the stratified 5-fold cross validation setting.
Of the 18,436 knees, 3,425 (19%) had PFOA. AUC and AP for the reference model including age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren-Lawrence (KL) grade to detect PFOA were 0.806 and 0.478, respectively. The CNN model that used only image data significantly improved the classifier performance (ROC AUC = 0.958, AP = 0.862).
We present the first machine learning based automatic PFOA detection method. Furthermore, our deep learning based model trained on patella region from knee lateral view radiographs performs better at detecting PFOA than models based on patient characteristics and clinical assessments.
评估基于影像学的深度学习在检测膝关节外侧位 X 线片放射学髌股关节炎(PFOA)方面的能力。
从多中心骨关节炎研究(MOST)公共数据集(n=18436 膝)中提取膝关节外侧位 X 线片。首先自动检测髌区感兴趣区(ROI),然后训练和验证端到端深度卷积神经网络(CNN)以检测髌股 OA 的状态。使用基于深度学习的目标检测方法检测髌区 ROI。MOST 公共数据集提供的专家读者对 PFOA 状态的图谱引导视觉评估被用作模型的分类结果。使用分层 5 折交叉验证设置中的接收者操作特征曲线(ROC AUC)和精确召回(PR)曲线获得的平均精度(AP)评估分类模型的性能。
在 18436 个膝关节中,有 3425 个(19%)患有 PFOA。包含年龄、性别、体重指数(BMI)、西部安大略省和麦克马斯特大学关节炎指数(WOMAC)总分和胫股 Kellgren-Lawrence(KL)分级的参考模型检测 PFOA 的 AUC 和 AP 分别为 0.806 和 0.478。仅使用图像数据的 CNN 模型显著提高了分类器性能(ROC AUC=0.958,AP=0.862)。
我们提出了第一个基于机器学习的自动 PFOA 检测方法。此外,我们基于膝关节外侧位 X 线片上的髌区训练的深度学习模型在检测 PFOA 方面的性能优于基于患者特征和临床评估的模型。