Suppr超能文献

使用机器学习模型识别哪些人不太可能从全膝关节置换术中受益。

Identifying who are unlikely to benefit from total knee arthroplasty using machine learning models.

作者信息

Liu Xiaodi, Liu Yingnan, Lee Mong Li, Hsu Wynne, Liow Ming Han Lincoln

机构信息

Institute of Data Science, National University of Singapore, Singapore, Singapore.

School of Computing, National University of Singapore, Singapore, Singapore.

出版信息

NPJ Digit Med. 2024 Sep 30;7(1):266. doi: 10.1038/s41746-024-01265-8.

Abstract

Identifying and preventing patients who are not likely to benefit long-term from total knee arthroplasty (TKA) would decrease healthcare expenditure significantly. We trained machine learning (ML) models (image-only, clinical-data only, and multimodal) among 5720 knee OA patients to predict postoperative dissatisfaction at 2 years. Dissatisfaction was defined as not achieving a minimal clinically important difference in postoperative Knee Society knee and function scores (KSS), Short Form-36 Health Survey [SF-36, divided into a physical component score (PCS) and mental component score (MCS)], and Oxford Knee Score (OKS). Compared to image-only models, both clinical-data only and multimodal models achieved superior performance at predicting dissatisfaction measured by AUC, clinical-data only model: KSS 0.888 (0.866-0.909), SF-PCS 0.836 (0.812-0.860), SF-MCS 0.833 (0.812-0.854), and OKS 0.806 (0.753-0.859); multimodal model: KSS 0.891 (0.870-0.911), SF-PCS 0.832 (0.808-0.857), SF-MCS 0.835 (0.811-0.856), and OKS 0.816 (0.768-0.863). Our findings highlighted that ML models using clinical or multimodal data were capable to predict post-TKA dissatisfaction.

摘要

识别并预防那些不太可能从全膝关节置换术(TKA)中获得长期益处的患者,将显著降低医疗保健支出。我们在5720例膝骨关节炎患者中训练了机器学习(ML)模型(仅图像模型、仅临床数据模型和多模态模型),以预测2年后的术后不满意情况。不满意被定义为术后膝关节协会膝关节和功能评分(KSS)、简短健康调查问卷36项(SF-36,分为身体成分评分(PCS)和精神成分评分(MCS))以及牛津膝关节评分(OKS)未达到最小临床重要差异。与仅图像模型相比,仅临床数据模型和多模态模型在通过AUC测量的预测不满意方面表现更优,仅临床数据模型:KSS为0.888(0.866 - 0.909),SF-PCS为0.836(0.812 - 0.860),SF-MCS为0.833(0.812 - 0.854),OKS为0.806(0.753 - 0.859);多模态模型:KSS为0.891(0.870 - 0.911),SF-PCS为0.832(0.808 - 0.857),SF-MCS为0.835(0.811 - 0.856),OKS为0.816(0.768 - 0.863)。我们的研究结果突出表明,使用临床或多模态数据的ML模型能够预测TKA术后的不满意情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adf6/11442804/9b7c64628dbc/41746_2024_1265_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验