Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Orthopaedics, Department of Clinical Sciences Lund Faculty of Medicine, Lund University, Lund, Sweden.
Methods Inf Med. 2024 May;63(1-02):1-10. doi: 10.1055/a-2305-2115. Epub 2024 Apr 11.
In this study, we propose a novel framework that utilizes deep learning and attention mechanisms to predict the radiographic progression of patellofemoral osteoarthritis (PFOA) over a period of 7 years.
This study included subjects (1,832 subjects, 3,276 knees) from the baseline of the Multicenter Osteoarthritis Study (MOST). Patellofemoral joint regions of interest were identified using an automated landmark detection tool (BoneFinder) on lateral knee X-rays. An end-to-end deep learning method was developed for predicting PFOA progression based on imaging data in a five-fold cross-validation setting. To evaluate the performance of the models, a set of baselines based on known risk factors were developed and analyzed using gradient boosting machine (GBM). Risk factors included age, sex, body mass index, and Western Ontario and McMaster Universities Arthritis Index score, and the radiographic osteoarthritis stage of the tibiofemoral joint (Kellgren and Lawrence [KL] score). Finally, to increase predictive power, we trained an ensemble model using both imaging and clinical data.
Among the individual models, the performance of our deep convolutional neural network attention model achieved the best performance with an area under the receiver operating characteristic curve (AUC) of 0.856 and average precision (AP) of 0.431, slightly outperforming the deep learning approach without attention (AUC = 0.832, AP = 0.4) and the best performing reference GBM model (AUC = 0.767, AP = 0.334). The inclusion of imaging data and clinical variables in an ensemble model allowed statistically more powerful prediction of PFOA progression (AUC = 0.865, AP = 0.447), although the clinical significance of this minor performance gain remains unknown. The spatial attention module improved the predictive performance of the backbone model, and the visual interpretation of attention maps focused on the joint space and the regions where osteophytes typically occur.
This study demonstrated the potential of machine learning models to predict the progression of PFOA using imaging and clinical variables. These models could be used to identify patients who are at high risk of progression and prioritize them for new treatments. However, even though the accuracy of the models were excellent in this study using the MOST dataset, they should be still validated using external patient cohorts in the future.
本研究提出了一种新的框架,利用深度学习和注意力机制来预测髌股关节炎(PFOA)在 7 年内的放射学进展。
本研究纳入了多中心骨关节炎研究(MOST)基线时的 1832 名受试者(3276 膝)。使用自动标志检测工具(BoneFinder)在膝关节外侧 X 线片上识别髌股关节感兴趣区。在五折交叉验证设置下,开发了一种基于影像学数据的端到端深度学习方法来预测 PFOA 进展。为了评估模型的性能,基于已知的危险因素,开发了一系列基线并使用梯度提升机(GBM)进行了分析。危险因素包括年龄、性别、体重指数和西安大略和麦克马斯特大学关节炎指数评分,以及胫股关节的放射学骨关节炎分期(Kellgren 和 Lawrence [KL] 评分)。最后,为了提高预测能力,我们使用影像学和临床数据训练了一个集成模型。
在个体模型中,我们的深度卷积神经网络注意力模型的性能表现最佳,其接收者操作特征曲线下面积(AUC)为 0.856,平均精度(AP)为 0.431,略优于没有注意力的深度学习方法(AUC=0.832,AP=0.4)和表现最佳的参考 GBM 模型(AUC=0.767,AP=0.334)。在集成模型中加入影像学数据和临床变量,可以更有力地预测 PFOA 的进展(AUC=0.865,AP=0.447),尽管这种微小的性能提升的临床意义尚不清楚。空间注意力模块提高了骨干模型的预测性能,注意力图的视觉解释重点关注关节间隙和骨赘通常发生的区域。
本研究证明了机器学习模型在使用影像学和临床变量预测 PFOA 进展方面的潜力。这些模型可用于识别进展风险较高的患者,并优先为他们提供新的治疗方法。然而,尽管这些模型在本研究中使用 MOST 数据集的准确性非常高,但未来仍需要使用外部患者队列进行验证。