Suppr超能文献

基于机器学习的 X 射线髌骨纹理分析在髌股关节炎检测中的应用。

Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis.

机构信息

Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.

Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland.

出版信息

Int J Med Inform. 2022 Jan;157:104627. doi: 10.1016/j.ijmedinf.2021.104627. Epub 2021 Oct 30.

Abstract

OBJECTIVE

To assess the ability of texture features for detecting radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs.

DESIGN

We used lateral view knee radiographs from The Multicenter Osteoarthritis Study (MOST) public use datasets (n  = 5507 knees). Patellar region-of-interest (ROI) was automatically detected using landmark detection tool (BoneFinder), and subsequently, these anatomical landmarks were used to extract three different texture ROIs. Hand-crafted features, based on Local Binary Patterns (LBP), were then extracted to describe the patellar texture. First, a machine learning model (Gradient Boosting Machine) was trained to detect radiographic PFOA from the LBP features. Furthermore, we used end-to-end trained deep convolutional neural networks (CNNs) directly on the texture patches for detecting the PFOA. The proposed classification models were eventually compared with more conventional reference models that use clinical assessments and participant characteristics such as age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren-Lawrence (KL) grade. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC), the area under the precision-recall (PR) curve -average precision (AP)-, and Brier score in the stratified 5-fold cross validation setting.

RESULTS

Of the 5507 knees, 953 (17.3%) had PFOA. AUC and AP for the strongest reference model including age, sex, BMI, WOMAC score, and tibiofemoral KL grade to predict PFOA were 0.817 and 0.487, respectively. Textural ROI classification using CNN significantly improved the prediction performance (ROC AUC = 0.889, AP = 0.714).

CONCLUSION

We present the first study that analyses patellar bone texture for diagnosing PFOA. Our results demonstrates the potential of using texture features of patella to predict PFOA.

摘要

目的

评估纹理特征从膝关节侧位 X 线片检测影像学髌股关节炎(PFOA)的能力。

设计

我们使用来自多中心骨关节炎研究(MOST)公共数据集的膝关节外侧位 X 线片(n=5507 个膝关节)。使用基于 landmark 的检测工具(BoneFinder)自动检测髌区感兴趣区(ROI),随后使用这些解剖学标记提取三个不同的纹理 ROI。基于局部二值模式(LBP)的手工制作特征,然后用于描述髌部纹理。首先,使用梯度提升机(GBM)从 LBP 特征中训练检测放射影像学 PFOA 的机器学习模型。此外,我们直接在纹理斑块上使用端到端训练的深度卷积神经网络(CNN)用于检测 PFOA。最终,将所提出的分类模型与使用临床评估和参与者特征(如年龄、性别、体重指数(BMI)、西部安大略省和麦克马斯特大学骨关节炎指数(WOMAC)总分和胫股 Kellgren-Lawrence(KL)分级)的更传统的参考模型进行比较。MOST 公共数据集提供的专家读者对 PFOA 状态的图谱引导视觉评估被用作模型的分类结果。在分层 5 折交叉验证设置中,使用接收器工作特征曲线(ROC AUC)下面积、精度-召回曲线下面积(PR AUC)-平均精度(AP)和 Brier 评分评估预测模型的性能。

结果

在 5507 个膝关节中,953 个(17.3%)有 PFOA。预测 PFOA 的最强参考模型包括年龄、性别、BMI、WOMAC 评分和胫股 KL 分级的 AUC 和 AP 分别为 0.817 和 0.487。使用 CNN 进行纹理 ROI 分类显著提高了预测性能(ROC AUC=0.889,AP=0.714)。

结论

我们首次分析了髌骨关节的骨纹理以诊断 PFOA。我们的结果表明,使用髌骨关节纹理特征预测 PFOA 具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验