Pandey Khushboo, Lokhande Kiran Bharat, Swamy K Venkateswara, Nagar Shuchi, Dake Manjusha
Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India.
Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India.
Bioinform Biol Insights. 2021 Jun 24;15:11779322211027403. doi: 10.1177/11779322211027403. eCollection 2021.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has increased the importance of computational tools to design a drug or vaccine in reduced time with minimum risk. Earlier studies have emphasized the important role of RNA-dependent RNA polymerase (RdRp) in SARS-CoV-2 replication as a potential drug target. In our study, comprehensive computational approaches were applied to identify potential compounds targeting RdRp of SARS-CoV-2. To study the binding affinity and stability of the phytocompounds from and within the defined binding site of SARS-CoV-2 RdRp, they were subjected to molecular docking, 100 ns molecular dynamics (MD) simulation followed by post-simulation analysis. Furthermore, to assess the importance of features involved in the strong binding affinity, molecular field-based similarity analysis was performed. Based on comparative molecular docking and simulation studies of the selected phytocompounds with SARS-CoV-2 RdRp revealed that EBDGp possesses a stronger binding affinity (-23.32 kcal/mol) and stability than other phytocompounds and reference compound, Remdesivir (-19.36 kcal/mol). Molecular field-based similarity profiling has supported our study in the validation of the importance of the presence of hydroxyl groups in EBDGp, involved in increasing its binding affinity toward SARS-CoV-2 RdRp. Molecular docking and dynamic simulation results confirmed that EBDGp has better inhibitory potential than Remdesivir and can be an effective novel drug for SARS-CoV-2 RdRp. Furthermore, binding free energy calculations confirmed the higher stability of the SARS-CoV-2 RdRp-EBDGp complex. These results suggest that the EBDGp compound may emerge as a promising drug against SARS-CoV-2 and hence requires further experimental validation.
全球范围内的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)增加了计算工具在以最短时间和最小风险设计药物或疫苗方面的重要性。早期研究强调了RNA依赖性RNA聚合酶(RdRp)在SARS-CoV-2复制中作为潜在药物靶点的重要作用。在我们的研究中,应用了全面的计算方法来识别靶向SARS-CoV-2 RdRp的潜在化合物。为了研究来自[具体来源1]和[具体来源2]的植物化合物在SARS-CoV-2 RdRp定义结合位点内的结合亲和力和稳定性,对它们进行了分子对接、100纳秒分子动力学(MD)模拟,随后进行模拟后分析。此外,为了评估参与强结合亲和力的特征的重要性,进行了基于分子场的相似性分析。基于所选植物化合物与SARS-CoV-2 RdRp的比较分子对接和模拟研究表明,EBDGp比其他植物化合物和参考化合物瑞德西韦(-19.36 kcal/mol)具有更强的结合亲和力(-23.32 kcal/mol)和稳定性。基于分子场的相似性分析支持了我们的研究,验证了EBDGp中羟基的存在对增加其与SARS-CoV-2 RdRp结合亲和力的重要性。分子对接和动态模拟结果证实,EBDGp比瑞德西韦具有更好的抑制潜力,可能是一种针对SARS-CoV-2 RdRp的有效新型药物。此外,结合自由能计算证实了SARS-CoV-2 RdRp-EBDGp复合物具有更高的稳定性。这些结果表明,EBDGp化合物可能成为一种有前景的抗SARS-CoV-2药物,因此需要进一步的实验验证。