Suppr超能文献

疑似冠心病患者动脉粥样硬化斑块分布谱及冠状动脉粥样硬化负荷无创筛查模型的研究

Research on the distribution spectrum of atherosclerotic plaques in patients with suspected coronary artery disease and the noninvasive screening model for coronary atherosclerosis burden.

作者信息

Han Pengxi, Tang Jinyan, Wang Ximing, Su Yuwen, Li Guijie, Deng Kai

机构信息

Department of Radiology, the First Affiliated Hospital of Shandong First Medical University, Jinan, China.

Department of Pediatrics, Xiangxi Autonomous Prefecture People's Hospital, Jishou, China.

出版信息

Quant Imaging Med Surg. 2021 Jul;11(7):3274-3285. doi: 10.21037/qims-20-901.

Abstract

BACKGROUND

This study aimed to establish a non-invasive and simple screening model of coronary atherosclerosis burden based on the associations between multiple blood parameters and total plaque score (TPS), segment-stenosis score (SSS), coronary artery disease severity (CADS) in coronary artery disease (CAD) and thus reduce unnecessary coronary angiography (CAG).

METHODS

A total of 1,366 patients with suspected CAD who underwent CAG were included in this study. The clinical risk factors [age, gender, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), high-density lipoprotein (HDL), triglyceride (TG), low-density lipoprotein (LDL), fasting plasma glucose (FPG), and glycated hemoglobin (GHB)] were collected. The presence of plaques and lumen stenosis was assessed based on CAG imaging. The TPS, SSS, and CADS were calculated, and the distribution spectrum of atherosclerotic plaques was described. Kruskal-Wallis test for multiple comparison tests was performed to analyze the differences in groups of different risk factors. The selected independent predictors were put into a multivariate logistic model, and the variables were further screened by stepwise regression to establish a screening model. Finally, the receiver operating characteristic (ROC) curve was used to evaluate the selected model's discriminant effect.

RESULTS

The distributions of TPS and SSS scores were both right-skewed. Among males, both TPS and SSS scores were higher than in females (χ=46.7659, P<0.0001, χ=51.6603, P<0.0001). Both TPS and SSS scores increased with age (χ=123.4456, P<0.0001, χ=123.4456, P<0.0001). For TPS, the most common position was proximal left anterior descending artery (P-LAD, 51.39%). In SSS, the P-LAD plaque was highest: 0: 48.61%, 1: 10.32%, 2: 9.15%, and 3: 31.92%. The TPS score >5, SSS score >5, and CAD >0 were valuable indicators for SBP, FPG, TG, HDL, and GHB. In the model, TPS score >5, SSS score >5, and CADS >0, the area under ROC curve (AUC) was 0.753 [95% confidence interval (CI): 0.713 to 0.789], 0.728 (95% CI: 0.687 to 0.766), and 0.756 (95% CI: 0.717 to 0.793), respectively.

CONCLUSIONS

The most common site of lesions was P-LAD. These models can be used as non-invasive and simple initial screening tools without CAG.

摘要

背景

本研究旨在基于多种血液参数与冠状动脉疾病(CAD)中的总斑块评分(TPS)、节段狭窄评分(SSS)、冠状动脉疾病严重程度(CADS)之间的关联,建立一种无创且简单的冠状动脉粥样硬化负担筛查模型,从而减少不必要的冠状动脉造影(CAG)。

方法

本研究纳入了1366例接受CAG的疑似CAD患者。收集临床危险因素[年龄、性别、收缩压(SBP)、舒张压(DBP)、总胆固醇(TC)、高密度脂蛋白(HDL)、甘油三酯(TG)、低密度脂蛋白(LDL)、空腹血糖(FPG)和糖化血红蛋白(GHB)]。基于CAG成像评估斑块和管腔狭窄的存在情况。计算TPS、SSS和CADS,并描述动脉粥样硬化斑块的分布谱。进行Kruskal-Wallis检验进行多重比较,以分析不同危险因素组之间的差异。将选定的独立预测因子纳入多变量逻辑模型,并通过逐步回归进一步筛选变量以建立筛查模型。最后,使用受试者工作特征(ROC)曲线评估所选模型的判别效果。

结果

TPS和SSS评分的分布均为右偏态。在男性中,TPS和SSS评分均高于女性(χ=46.7659,P<0.0001,χ=51.6603,P<0.0001)。TPS和SSS评分均随年龄增加而升高(χ=123.4456,P<0.0001,χ=123.4456,P<0.0001)。对于TPS,最常见的部位是左前降支近端(P-LAD,51.39%)。在SSS中,P-LAD斑块最高:0级:48.61%,1级:10.32%,2级:9.15%,3级:31.92%。TPS评分>5、SSS评分>5和CAD>0是SBP、FPG、TG、HDL和GHB的有价值指标。在模型中,TPS评分>5、SSS评分>5和CADS>0时,ROC曲线下面积(AUC)分别为0.753[95%置信区间(CI):0.713至0.789]、0.728(95%CI:0.687至0.766)和0.756(95%CI:0.717至0.793)。

结论

最常见的病变部位是P-LAD。这些模型可作为无需CAG的无创且简单的初始筛查工具。

相似文献

本文引用的文献

3
A review on coronary artery disease, its risk factors, and therapeutics.冠状动脉疾病综述:危险因素与治疗策略
J Cell Physiol. 2019 Aug;234(10):16812-16823. doi: 10.1002/jcp.28350. Epub 2019 Feb 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验