Suppr超能文献

使用深度卷积神经网络在全切片图像中自动检测胰腺导管腺癌

Automatic Pancreatic Ductal Adenocarcinoma Detection in Whole Slide Images Using Deep Convolutional Neural Networks.

作者信息

Fu Hao, Mi Weiming, Pan Boju, Guo Yucheng, Li Junjie, Xu Rongyan, Zheng Jie, Zou Chunli, Zhang Tao, Liang Zhiyong, Zou Junzhong, Zou Hao

机构信息

Department of Automation, School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.

Department of Automation, School of Information Science and Technology, Tsinghua University, Beijing, China.

出版信息

Front Oncol. 2021 Jun 25;11:665929. doi: 10.3389/fonc.2021.665929. eCollection 2021.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancer types worldwide, with the lowest 5-year survival rate among all kinds of cancers. Histopathology image analysis is considered a gold standard for PDAC detection and diagnosis. However, the manual diagnosis used in current clinical practice is a tedious and time-consuming task and diagnosis concordance can be low. With the development of digital imaging and machine learning, several scholars have proposed PDAC analysis approaches based on feature extraction methods that rely on field knowledge. However, feature-based classification methods are applicable only to a specific problem and lack versatility, so that the deep-learning method is becoming a vital alternative to feature extraction. This paper proposes the first deep convolutional neural network architecture for classifying and segmenting pancreatic histopathological images on a relatively large WSI dataset. Our automatic patch-level approach achieved 95.3% classification accuracy and the WSI-level approach achieved 100%. Additionally, we visualized the classification and segmentation outcomes of histopathological images to determine which areas of an image are more important for PDAC identification. Experimental results demonstrate that our proposed model can effectively diagnose PDAC using histopathological images, which illustrates the potential of this practical application.

摘要

胰腺导管腺癌(PDAC)是全球最致命的癌症类型之一,在所有癌症中5年生存率最低。组织病理学图像分析被认为是PDAC检测和诊断的金标准。然而,当前临床实践中使用的手动诊断是一项繁琐且耗时的任务,诊断一致性可能较低。随着数字成像和机器学习的发展,一些学者提出了基于依赖领域知识的特征提取方法的PDAC分析方法。然而,基于特征的分类方法仅适用于特定问题,缺乏通用性,因此深度学习方法正成为特征提取的重要替代方法。本文提出了首个用于在相对较大的全切片图像(WSI)数据集上对胰腺组织病理学图像进行分类和分割的深度卷积神经网络架构。我们的自动补丁级方法实现了95.3%的分类准确率,而WSI级方法实现了100%的准确率。此外,我们对组织病理学图像的分类和分割结果进行了可视化,以确定图像的哪些区域对PDAC识别更为重要。实验结果表明,我们提出的模型可以使用组织病理学图像有效地诊断PDAC,这说明了这种实际应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b11/8267174/79fa2d2153ea/fonc-11-665929-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验