Suppr超能文献

使用苝二酰亚胺衍生物修饰SnO电子传输层用于高效有机太阳能电池

Modification of the SnO Electron Transporting Layer by Using Perylene Diimide Derivative for Efficient Organic Solar Cells.

作者信息

Kong Tianyu, Wang Rui, Zheng Ding, Yu Junsheng

机构信息

State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China.

出版信息

Front Chem. 2021 Jun 25;9:703561. doi: 10.3389/fchem.2021.703561. eCollection 2021.

Abstract

Recently, tin oxide (SnO) nanoparticles (NPs) have attracted considerable attention as the electron transporting layer (ETL) for organic solar cells (OSCs) due to their superior electrical properties, excellent chemical stability, and compatibility with low-temperature solution fabrication. However, the rough surface of SnO NPs may generate numerous defects, which limits the performance of the OSCs. In this study, we introduce a perylene diimide derivative (PDINO) that could passivate the defects between SnO NP ETL and the active layer. Compared with the power conversion efficiency (PCE) of the pristine SnO ETL-based OSCs (12.7%), the PDINO-modified device delivers a significantly increased PCE of 14.9%. Overall, this novel composite ETL exhibits lowered work function, improved electron mobility, and reduced surface defects, thus increasing charge collection efficiency and restraining defect-caused molecular recombination in the OSC. Overall, this work demonstrates a strategy of utilizing the organic-inorganic hybrid ETL that has the potential to overcome the drawbacks of SnO NPs, thereby developing efficient and stable OSCs.

摘要

最近,氧化锡(SnO)纳米颗粒(NPs)作为有机太阳能电池(OSCs)的电子传输层(ETL)受到了广泛关注,因为它们具有优异的电学性能、出色的化学稳定性以及与低温溶液制备工艺的兼容性。然而,SnO NPs的粗糙表面可能会产生大量缺陷,这限制了OSCs的性能。在本研究中,我们引入了一种苝二酰亚胺衍生物(PDINO),它可以钝化SnO NP ETL与活性层之间的缺陷。与基于原始SnO ETL的OSCs的功率转换效率(PCE)(12.7%)相比,经PDINO修饰的器件的PCE显著提高,达到了14.9%。总体而言,这种新型复合ETL具有降低的功函数、提高的电子迁移率和减少的表面缺陷,从而提高了电荷收集效率并抑制了OSC中由缺陷引起的分子复合。总体而言,这项工作展示了一种利用有机-无机混合ETL的策略,该策略有可能克服SnO NPs的缺点,从而开发出高效且稳定的OSCs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afca/8267467/d9d8eda8d7f2/fchem-09-703561-g001.jpg

相似文献

1
Modification of the SnO Electron Transporting Layer by Using Perylene Diimide Derivative for Efficient Organic Solar Cells.
Front Chem. 2021 Jun 25;9:703561. doi: 10.3389/fchem.2021.703561. eCollection 2021.
2
Fullerene Derivative-Modified SnO Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33825-33834. doi: 10.1021/acsami.9b09238. Epub 2019 Sep 4.
3
Co-Tuned Tin Oxide Interfaces for Enhanced Stability of Organic Solar Cells.
Langmuir. 2021 Mar 16;37(10):3173-3179. doi: 10.1021/acs.langmuir.1c00080. Epub 2021 Mar 3.
4
Dimensionality Control of SnO Films for Hysteresis-Free, All-Inorganic CsPbBr Perovskite Solar Cells with Efficiency Exceeding 10.
ACS Appl Mater Interfaces. 2021 Mar 10;13(9):11058-11066. doi: 10.1021/acsami.0c22542. Epub 2021 Feb 26.
5
Zwitterion Nondetergent Sulfobetaine-Modified SnO as an Efficient Electron Transport Layer for Inverted Organic Solar Cells.
ACS Omega. 2019 Nov 4;4(21):19225-19237. doi: 10.1021/acsomega.9b02551. eCollection 2019 Nov 19.
6
Graphene-Modified Tin Dioxide for Efficient Planar Perovskite Solar Cells with Enhanced Electron Extraction and Reduced Hysteresis.
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):666-673. doi: 10.1021/acsami.8b15665. Epub 2018 Dec 20.
7
Tin Oxide Electron Transport Layers for Air-/Solution-Processed Conventional Organic Solar Cells.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):1568-1577. doi: 10.1021/acsami.1c19790. Epub 2022 Jan 3.
8
Multi-functional Strategy: Ammonium Citrate-Modified SnO ETL for Efficient and Stable Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2022 Sep 28;14(38):43975-43986. doi: 10.1021/acsami.2c13309. Epub 2022 Sep 14.
10
Outstanding Fill Factor in Inverted Organic Solar Cells with SnO by Atomic Layer Deposition.
Adv Mater. 2024 May;36(20):e2301404. doi: 10.1002/adma.202301404. Epub 2023 Apr 21.

引用本文的文献

1
Nanocrystals as performance-boosting materials for solar cells.
Nanoscale Adv. 2024 Feb 1;6(5):1331-1360. doi: 10.1039/d3na01063e. eCollection 2024 Feb 27.
2
Enhancing the Performance of Wide-Bandgap Polymer-Based Organic Solar Cells through Silver Nanorod Integration.
ACS Omega. 2024 Feb 6;9(7):8082-8091. doi: 10.1021/acsomega.3c08386. eCollection 2024 Feb 20.
3
Recent Advances of Doped SnO as Electron Transport Layer for High-Performance Perovskite Solar Cells.
Materials (Basel). 2023 Sep 12;16(18):6170. doi: 10.3390/ma16186170.
5
Low-Temperature UVO-Sintered ZnO/SnO as Robust Cathode Buffer Layer for Ternary Organic Solar Cells.
Nanomaterials (Basel). 2022 Sep 11;12(18):3149. doi: 10.3390/nano12183149.

本文引用的文献

2
Organic solar cells based on non-fullerene acceptors.
Nat Mater. 2018 Jan 23;17(2):119-128. doi: 10.1038/nmat5063.
3
Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.
Adv Sci (Weinh). 2016 Feb 18;3(8):1500362. doi: 10.1002/advs.201500362. eCollection 2016 Aug.
4
Enhanced performance in inverted polymer solar cells with D-π-A-type molecular dye incorporated on ZnO buffer layer.
ChemSusChem. 2013 Aug;6(8):1445-54. doi: 10.1002/cssc.201300240. Epub 2013 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验