Di Mario Lorenzo, Garcia Romero David, Wang Han, Tekelenburg Eelco K, Meems Sander, Zaharia Teodor, Portale Giuseppe, Loi Maria A
Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
Physical Chemistry of Polymeric and Nanostructured Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
Adv Mater. 2024 May;36(20):e2301404. doi: 10.1002/adma.202301404. Epub 2023 Apr 21.
Transport layers are of outmost importance for thin-film solar cells, determining not only their efficiency but also their stability. To bring one of these thin-film technologies toward mass production, many factors besides efficiency and stability become important, including the ease of deposition in a scalable manner and the cost of the different material's layers. Herein, highly efficient organic solar cells (OSCs), in the inverted structure (n-i-p), are demonstrated by using as electron transport layer (ETL) tin oxide (SnO) deposited by atomic layer deposition (ALD). ALD is an industrial grade technique which can be applied at the wafer level and also in a roll-to-roll configuration. A champion power conversion efficiency (PCE) of 17.26% and a record fill factor (FF) of 79% are shown by PM6:L8-BO OSCs when using ALD-SnO as ETL. These devices outperform solar cells with SnO nanoparticles casted from solution (PCE 16.03%, FF 74%) and also those utilizing the more common sol-gel ZnO (PCE 16.84%, FF 77%). The outstanding results are attributed to a reduced charge carrier recombination at the interface between the ALD-SnO film and the active layer. Furthermore, a higher stability under illumination is demonstrated for the devices with ALD-SnO in comparison with those utilizing ZnO.
传输层对于薄膜太阳能电池至关重要,不仅决定其效率,还决定其稳定性。为了将这些薄膜技术之一推向大规模生产,除了效率和稳定性之外,许多因素变得很重要,包括以可扩展方式沉积的难易程度以及不同材料层的成本。在此,通过使用原子层沉积(ALD)沉积的氧化锡(SnO)作为电子传输层(ETL),展示了倒置结构(n-i-p)的高效有机太阳能电池(OSC)。ALD是一种工业级技术,可应用于晶圆级,也可应用于卷对卷配置。当使用ALD-SnO作为ETL时,PM6:L8-BO OSC的最佳功率转换效率(PCE)为17.26%,填充因子(FF)创纪录地达到79%。这些器件的性能优于采用溶液浇铸的SnO纳米颗粒的太阳能电池(PCE 16.03%,FF 74%)以及那些使用更常见的溶胶-凝胶ZnO的太阳能电池(PCE 16.84%,FF 77%)。出色的结果归因于ALD-SnO薄膜与活性层之间界面处电荷载流子复合的减少。此外,与使用ZnO的器件相比,具有ALD-SnO的器件在光照下表现出更高的稳定性。