Suppr超能文献

寻找语义相似性:语义向量空间模型可以告诉我们关于现实场景中注意力的什么信息。

Looking for Semantic Similarity: What a Vector-Space Model of Semantics Can Tell Us About Attention in Real-World Scenes.

机构信息

Center for Mind and Brain, University of California, Davis.

Department of Psychology, University of California, Davis.

出版信息

Psychol Sci. 2021 Aug;32(8):1262-1270. doi: 10.1177/0956797621994768. Epub 2021 Jul 12.

Abstract

The visual world contains more information than we can perceive and understand in any given moment. Therefore, we must prioritize important scene regions for detailed analysis. Semantic knowledge gained through experience is theorized to play a central role in determining attentional priority in real-world scenes but is poorly understood. Here, we examined the relationship between object semantics and attention by combining a vector-space model of semantics with eye movements in scenes. In this approach, the vector-space semantic model served as the basis for a concept map, an index of the spatial distribution of the semantic similarity of objects across a given scene. The results showed a strong positive relationship between the semantic similarity of a scene region and viewers' focus of attention; specifically, greater attention was given to more semantically related scene regions. We conclude that object semantics play a critical role in guiding attention through real-world scenes.

摘要

视觉世界包含的信息比我们在任何给定时刻能够感知和理解的都要多。因此,我们必须优先考虑重要的场景区域进行详细分析。通过经验获得的语义知识被理论化为在确定现实场景中的注意力优先级方面起着核心作用,但人们对此知之甚少。在这里,我们通过将语义的向量空间模型与场景中的眼动相结合,研究了对象语义和注意力之间的关系。在这种方法中,向量空间语义模型充当了概念图的基础,该概念图是给定场景中对象语义相似性的空间分布索引。结果表明,场景区域的语义相似性与观察者的注意力焦点之间存在很强的正相关关系;具体来说,更多的注意力被分配给语义上更相关的场景区域。我们的结论是,对象语义在通过现实场景引导注意力方面起着关键作用。

相似文献

1
Looking for Semantic Similarity: What a Vector-Space Model of Semantics Can Tell Us About Attention in Real-World Scenes.
Psychol Sci. 2021 Aug;32(8):1262-1270. doi: 10.1177/0956797621994768. Epub 2021 Jul 12.
2
Exploring the Semantic-Inconsistency Effect in Scenes Using a Continuous Measure of Linguistic-Semantic Similarity.
Psychol Sci. 2024 Jun;35(6):623-634. doi: 10.1177/09567976241238217. Epub 2024 Apr 23.
3
The roles of scene gist and spatial dependency among objects in the semantic guidance of attention in real-world scenes.
Vision Res. 2014 Dec;105:10-20. doi: 10.1016/j.visres.2014.08.019. Epub 2014 Sep 6.
4
Semantic guidance of eye movements in real-world scenes.
Vision Res. 2011 May 25;51(10):1192-205. doi: 10.1016/j.visres.2011.03.010. Epub 2011 Mar 21.
5
Rapid Extraction of the Spatial Distribution of Physical Saliency and Semantic Informativeness from Natural Scenes in the Human Brain.
J Neurosci. 2022 Jan 5;42(1):97-108. doi: 10.1523/JNEUROSCI.0602-21.2021. Epub 2021 Nov 8.
6
Disrupted object-scene semantics boost scene recall but diminish object recall in drawings from memory.
Mem Cognit. 2021 Nov;49(8):1568-1582. doi: 10.3758/s13421-021-01180-3. Epub 2021 May 24.
7
Meaning Guides Attention during Real-World Scene Description.
Sci Rep. 2018 Sep 10;8(1):13504. doi: 10.1038/s41598-018-31894-5.
9
Scene inversion reveals distinct patterns of attention to semantically interpreted and uninterpreted features.
Cognition. 2022 Dec;229:105231. doi: 10.1016/j.cognition.2022.105231. Epub 2022 Jul 28.
10
Influence of semantic consistency and perceptual features on visual attention during scene viewing in toddlers.
Infant Behav Dev. 2017 Nov;49:248-266. doi: 10.1016/j.infbeh.2017.09.008. Epub 2017 Oct 10.

引用本文的文献

2
Ensemble representation of animacy could be based on mid-level visual features.
Atten Percept Psychophys. 2025 Feb;87(2):415-430. doi: 10.3758/s13414-024-02976-6. Epub 2024 Dec 4.
3
Quantifying task-related gaze.
Atten Percept Psychophys. 2024 May;86(4):1318-1329. doi: 10.3758/s13414-024-02883-w. Epub 2024 Apr 9.
4
Integrative processing in artificial and biological vision predicts the perceived beauty of natural images.
Sci Adv. 2024 Mar;10(9):eadi9294. doi: 10.1126/sciadv.adi9294. Epub 2024 Mar 1.
6
The role of local meaning in infants' fixations of natural scenes.
Infancy. 2024 Mar-Apr;29(2):284-298. doi: 10.1111/infa.12582. Epub 2024 Jan 6.
7
Objects are selected for attention based upon meaning during passive scene viewing.
Psychon Bull Rev. 2023 Oct;30(5):1874-1886. doi: 10.3758/s13423-023-02286-2. Epub 2023 Apr 24.
8
Low-level factors increase gaze-guidance under cognitive load: A comparison of image-salience and semantic-salience models.
PLoS One. 2022 Nov 28;17(11):e0277691. doi: 10.1371/journal.pone.0277691. eCollection 2022.
9
Visual attention during seeing for speaking in healthy aging.
Psychol Aging. 2023 Feb;38(1):49-66. doi: 10.1037/pag0000718. Epub 2022 Nov 17.
10
Look at what I can do: Object affordances guide visual attention while speakers describe potential actions.
Atten Percept Psychophys. 2022 Jul;84(5):1583-1610. doi: 10.3758/s13414-022-02467-6. Epub 2022 Apr 28.

本文引用的文献

1
Five Factors that Guide Attention in Visual Search.
Nat Hum Behav. 2017 Mar;1(3). doi: 10.1038/s41562-017-0058. Epub 2017 Mar 8.
2
Eye Movements in Real-World Scene Photographs: General Characteristics and Effects of Viewing Task.
Front Psychol. 2020 Jan 14;10:2915. doi: 10.3389/fpsyg.2019.02915. eCollection 2019.
3
Meaning and Attentional Guidance in Scenes: A Review of the Meaning Map Approach.
Vision (Basel). 2019 May 10;3(2):19. doi: 10.3390/vision3020019.
4
Vector-Space Models of Semantic Representation From a Cognitive Perspective: A Discussion of Common Misconceptions.
Perspect Psychol Sci. 2019 Nov;14(6):1006-1033. doi: 10.1177/1745691619861372. Epub 2019 Sep 10.
5
Center bias outperforms image salience but not semantics in accounting for attention during scene viewing.
Atten Percept Psychophys. 2020 Jun;82(3):985-994. doi: 10.3758/s13414-019-01849-7.
6
Scene semantics involuntarily guide attention during visual search.
Psychon Bull Rev. 2019 Oct;26(5):1683-1689. doi: 10.3758/s13423-019-01642-5.
7
Meaning-based guidance of attention in scenes as revealed by meaning maps.
Nat Hum Behav. 2017 Oct;1(10):743-747. doi: 10.1038/s41562-017-0208-0. Epub 2017 Sep 25.
10
Probabilistic language models in cognitive neuroscience: Promises and pitfalls.
Neurosci Biobehav Rev. 2017 Dec;83:579-588. doi: 10.1016/j.neubiorev.2017.09.001. Epub 2017 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验