Suppr超能文献

PathCNN:适用于胶质母细胞瘤的可解释卷积神经网络的生存预测和途径分析。

PathCNN: interpretable convolutional neural networks for survival prediction and pathway analysis applied to glioblastoma.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Department of Computer Science, Virginia State University, Petersburg, VA 23806, USA.

出版信息

Bioinformatics. 2021 Jul 12;37(Suppl_1):i443-i450. doi: 10.1093/bioinformatics/btab285.

Abstract

MOTIVATION

Convolutional neural networks (CNNs) have achieved great success in the areas of image processing and computer vision, handling grid-structured inputs and efficiently capturing local dependencies through multiple levels of abstraction. However, a lack of interpretability remains a key barrier to the adoption of deep neural networks, particularly in predictive modeling of disease outcomes. Moreover, because biological array data are generally represented in a non-grid structured format, CNNs cannot be applied directly.

RESULTS

To address these issues, we propose a novel method, called PathCNN, that constructs an interpretable CNN model on integrated multi-omics data using a newly defined pathway image. PathCNN showed promising predictive performance in differentiating between long-term survival (LTS) and non-LTS when applied to glioblastoma multiforme (GBM). The adoption of a visualization tool coupled with statistical analysis enabled the identification of plausible pathways associated with survival in GBM. In summary, PathCNN demonstrates that CNNs can be effectively applied to multi-omics data in an interpretable manner, resulting in promising predictive power while identifying key biological correlates of disease.

AVAILABILITY AND IMPLEMENTATION

The source code is freely available at: https://github.com/mskspi/PathCNN.

摘要

动机

卷积神经网络(CNN)在图像处理和计算机视觉领域取得了巨大成功,能够处理网格结构的输入,并通过多层次的抽象有效地捕获局部依赖性。然而,可解释性的缺乏仍然是深度神经网络采用的一个关键障碍,特别是在疾病结果的预测建模方面。此外,由于生物阵列数据通常以非网格结构的格式表示,因此不能直接应用 CNN。

结果

为了解决这些问题,我们提出了一种新的方法,称为 PathCNN,该方法使用新定义的途径图像在集成的多组学数据上构建可解释的 CNN 模型。PathCNN 在应用于多形性胶质母细胞瘤(GBM)时,在区分长期生存(LTS)和非 LTS 方面表现出了有前途的预测性能。采用可视化工具并结合统计分析,确定了与 GBM 生存相关的可能途径。总之,PathCNN 表明 CNN 可以以可解释的方式有效地应用于多组学数据,从而在识别疾病的关键生物学相关性的同时,具有有前途的预测能力。

可用性和实现

源代码可在以下网址免费获取:https://github.com/mskspi/PathCNN。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验