Suppr超能文献

一种强大的统计方法,用于发现具有信息性的空间关联途径。

A robust statistical approach for finding informative spatially associated pathways.

机构信息

School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P.R. China.

Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, P.R. China.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae543.

Abstract

Spatial transcriptomics offers deep insights into cellular functional localization and communication by mapping gene expression to spatial locations. Traditional approaches that focus on selecting spatially variable genes often overlook the complexity of biological pathways and the interactions among genes. Here, we introduce a novel framework that shifts the focus towards directly identifying functional pathways associated with spatial variability by adapting the Brownian distance covariance test in an innovative manner to explore the heterogeneity of biological functions over space. Unlike most other methods, this statistical testing approach is free of gene selection and parameter selection and allows nonlinear and complex dependencies. It allows for a deeper understanding of how cells coordinate their activities across different spatial domains through biological pathways. By analyzing real human and mouse datasets, the method found significant pathways that were associated with spatial variation, as well as different pathway patterns among inner- and edge-cancer regions. This innovative framework offers a new perspective on analyzing spatial transcriptomic data, contributing to our understanding of tissue architecture and disease pathology. The implementation is publicly available at https://github.com/tianlq-prog/STpathway.

摘要

空间转录组学通过将基因表达映射到空间位置,提供了对细胞功能定位和通讯的深入了解。传统的方法侧重于选择空间上可变的基因,往往忽略了生物途径的复杂性和基因之间的相互作用。在这里,我们介绍了一种新颖的框架,通过以创新的方式调整布朗距离协方差检验,将重点直接转移到识别与空间变异性相关的功能途径上,以探索空间上生物功能的异质性。与大多数其他方法不同,这种统计测试方法无需进行基因选择和参数选择,并且允许非线性和复杂的依赖关系。它可以更深入地了解细胞如何通过生物途径在不同的空间域协调其活动。通过分析真实的人类和小鼠数据集,该方法发现了与空间变化相关的重要途径,以及内肿瘤区和边缘肿瘤区之间不同的途径模式。这种创新的框架为分析空间转录组学数据提供了新的视角,有助于我们理解组织架构和疾病病理学。该实现可在 https://github.com/tianlq-prog/STpathway 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2198/11503753/84c5667a6b3a/bbae543f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验