Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States.
Department of Civil & Environmental Engineering, College of Engineering & Computer Science, Syracuse University, Syracuse, New York 13244, United States.
J Am Chem Soc. 2021 Jul 28;143(29):10910-10919. doi: 10.1021/jacs.1c00708. Epub 2021 Jul 13.
As the only ribosomally encoded N-substituted amino acid, proline promotes distinct secondary protein structures. The high proline content in collagen, the most abundant protein in the human body, is crucial to forming its hallmark structure: the triple-helix. For over five decades, proline has been considered compulsory for synthetic designs aimed at recapitulating collagen's structure and properties. Here we describe that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, enabling synthesis of stable triple-helical collagen mimetic peptides (CMPs) with unprecedented side chain diversity. Supported by atomic-resolution crystal structures as well as circular dichroism and computational characterizations spanning over 30 N-gly-containing CMPs, we discovered that N-glys stabilize the triple-helix primarily by sterically preorganizing individual chains into the polyproline-II helix. We demonstrated that N-glys with exotic side chains including a "click"-able alkyne and a photosensitive side chain enable CMPs for functional applications including the spatiotemporal control of cell adhesion and migration. The structural principles uncovered in this study open up opportunities for a new generation of collagen-mimetic therapeutics and materials.
脯氨酸是唯一一种核糖体编码的 N-取代氨基酸,它能促进独特的二级蛋白质结构形成。在人体中含量最丰富的蛋白质胶原蛋白中,脯氨酸的高含量对于形成其标志性的三螺旋结构至关重要。五十多年来,脯氨酸一直被认为是合成设计中必不可少的,这些设计旨在重现胶原蛋白的结构和特性。在这里,我们描述了 N-取代甘氨酸(N-甘氨酸),也称为肽模拟物残基,具有一般的三螺旋倾向,与脯氨酸相似或更强,能够合成具有前所未有的侧链多样性的稳定三螺旋胶原蛋白模拟肽(CMP)。这项研究得到了原子分辨率晶体结构以及涵盖 30 多种含 N-甘氨酸的 CMP 的圆二色性和计算特性的支持,我们发现 N-甘氨酸主要通过将单个链立体预组织成聚脯氨酸-II 螺旋来稳定三螺旋。我们证明了具有奇异侧链的 N-甘氨酸,包括可点击的炔烃和光敏侧链,能够使 CMP 具有功能应用,包括细胞黏附和迁移的时空控制。这项研究揭示的结构原则为新一代胶原蛋白模拟治疗剂和材料开辟了机会。