Bhide Malavika A, Mears Kristian L, Carmalt Claire J, Knapp Caroline E
Materials Chemistry Centre, Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
Chem Sci. 2021 May 24;12(25):8822-8831. doi: 10.1039/d1sc01846a. eCollection 2021 Jul 1.
Ethyl and amide zinc thioureides [LZnEt] (), [LZnEt] () and [LZn(N(SiMe))] () have been synthesised from the equimolar reaction of thiourea ligands (HL = PrN(H)CSNMe and HL = PhN(H)CSNMe) with diethyl zinc and zinc bis[bis(trimethylsilyl)amide] respectively. New routes towards heteroleptic complexes have been investigated through reactions of , and with β-ketoiminates (HL = [(Me)CN(H){Pr}-CHC(Me)[double bond, length as m-dash]O]), bulky aryl substituted β-diiminates (HL = [(Me)CN(H){Dipp}-CHC(Me)[double bond, length as m-dash]N{Dipp}] (Dipp = diisopropylphenyl) and HL* = [(Me)CN(H){Dep}-CHC(Me)[double bond, length as m-dash]N{Dep}] (Dep = diethylphenyl)) and donor-functionalised alcohols (HL = EtN(CH)OH and HL* = MeN(CH)OH) and have led to the formation of the heteroleptic complexes [LZnL] (), [LZnL] (), [LZnL*] (), [LZnL] () and [LZnL*] (). All complexes have been characterised by H and C NMR, elemental analysis, and the X-ray structures of HL*, , , and have been determined single crystal X-ray diffraction. Variable temperature H, COSY and NOESY NMR experiments investigating the dynamic behaviour of , and have shown these molecules to be fluxional. On the basis of solution state fluxionality and thermogravimetric analysis (TGA), alkoxyzinc thioureides and were investigated as single-source precursors for the deposition of the ternary material zinc oxysulfide, Zn(O,S), a buffer layer used in thin film photovoltaic devices. The aerosol-assisted chemical vapour deposition (AACVD) reaction of at 400 °C led to the deposition of the heterodichalcogenide material Zn(O,S), which was confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX), with optical properties investigated using UV/vis spectroscopy, and surface morphology and film thickness examined using scanning electron microscopy (SEM).
乙基和酰胺基硫脲锌配合物[LZnEt]()、[LZnEt]()和[LZn(N(SiMe))]()分别通过硫脲配体(HL = PrN(H)CSNMe和HL = PhN(H)CSNMe)与二乙基锌以及双[双(三甲基硅基)酰胺]锌的等摩尔反应合成。通过、和与β-酮亚胺(HL = [(Me)CN(H){Pr}-CHC(Me)[双键,长度为m破折号]O])、大体积芳基取代的β-二亚胺(HL = [(Me)CN(H){Dipp}-CHC(Me)[双键,长度为m破折号]N{Dipp}](Dipp = 二异丙基苯基)和HL* = [(Me)CN(H){Dep}-CHC(Me)[双键,长度为m破折号]N{Dep}](Dep = 二乙基苯基))以及供体功能化醇(HL = EtN(CH)OH和HL* = MeN(CH)OH)的反应,研究了合成杂配体配合物的新途径,并导致形成了杂配体配合物[LZnL]()、[LZnL]()、[LZnL*]()、[LZnL]()和[LZnL*]()。所有配合物均通过H和C NMR、元素分析进行了表征,并且通过单晶X射线衍射确定了HL*、、、和的X射线结构。研究、和动态行为的变温H、COSY和NOESY NMR实验表明这些分子具有流动性。基于溶液态流动性和热重分析(TGA),研究了烷氧基锌硫脲配合物和作为三元材料氧硫化锌Zn(O,S)沉积的单源前驱体,Zn(O,S)是薄膜光伏器件中使用的缓冲层。在400℃下的气溶胶辅助化学气相沉积(AACVD)反应导致了杂二硫属化物材料Zn(O,S)的沉积,通过X射线衍射(XRD)、X射线光电子能谱(XPS)和能量色散X射线分析(EDX)得到证实,使用紫外/可见光谱研究了其光学性质,并使用扫描电子显微镜(SEM)检查了表面形态和膜厚度。