MacKenzie Darryl I, Lombardi Jason V, Tewes Michael E
Proteus Outram New Zealand.
Department of Mathematics and Statistics University of Otago Dunedin New Zealand.
Ecol Evol. 2021 Jun 6;11(13):8507-8515. doi: 10.1002/ece3.7604. eCollection 2021 Jul.
Patterns in, and the underlying dynamics of, species co-occurrence is of interest in many ecological applications. Unaccounted for, imperfect detection of the species can lead to misleading inferences about the nature and magnitude of any interaction. A range of different parameterizations have been published that could be used with the same fundamental modeling framework that accounts for imperfect detection, although each parameterization has different advantages and disadvantages.We propose a parameterization based on log-linear modeling that does not require a species hierarchy to be defined (in terms of dominance) and enables a numerically robust approach for estimating covariate effects.Conceptually, the parameterization is equivalent to using the presence of species in the current, or a previous, time period as predictor variables for the current occurrence of other species. This leads to natural, "symmetric," interpretations of parameter estimates.The parameterization can be applied to many species, in either a maximum likelihood or Bayesian estimation framework. We illustrate the method using camera-trapping data collected on three mesocarnivore species in South Texas.
物种共存的模式及其潜在动态在许多生态应用中备受关注。若未考虑到物种检测不完美,可能会导致对任何相互作用的性质和强度产生误导性推断。尽管每种参数化方法都有不同的优缺点,但已有一系列不同的参数化方法发表,它们可与考虑检测不完美的相同基本建模框架一起使用。我们提出一种基于对数线性建模的参数化方法,该方法无需定义物种等级(从优势度角度),并能采用数值稳健的方法来估计协变量效应。从概念上讲,该参数化方法等同于将当前或前一个时间段内物种的存在作为其他物种当前出现情况的预测变量。这导致对参数估计的自然、“对称”解释。该参数化方法可应用于许多物种,无论是在最大似然估计框架还是贝叶斯估计框架中。我们使用在德克萨斯州南部收集的关于三种中型食肉动物物种的相机陷阱数据来说明该方法。