Suppr超能文献

具有多个状态和状态不确定性的占用估计与建模

Occupancy estimation and modeling with multiple states and state uncertainty.

作者信息

Nichols James D, Hines A James E, Mackenzie Darryl I, Seamans Mark E, Gutiérrez R J

机构信息

United States Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland 20708, USA.

出版信息

Ecology. 2007 Jun;88(6):1395-400. doi: 10.1890/06-1474.

Abstract

The distribution of a species over space is of central interest in ecology, but species occurrence does not provide all of the information needed to characterize either the well-being of a population or the suitability of occupied habitat. Recent methodological development has focused on drawing inferences about species occurrence in the face of imperfect detection. Here we extend those methods by characterizing occupied locations by some additional state variable (e.g., as producing young or not). Our modeling approach deals with both detection probabilities <1 and uncertainty in state classification. We then use the approach with occupancy and reproductive rate data from California Spotted Owls (Strix occidentalis occidentalis) collected in the central Sierra Nevada during the breeding season of 2004 to illustrate the utility of the modeling approach. Estimates of owl reproductive rate were larger than naïve estimates, indicating the importance of appropriately accounting for uncertainty in detection and state classification.

摘要

物种在空间上的分布是生态学的核心研究内容,但物种出现情况并不能提供描述种群健康状况或已占据栖息地适宜性所需的全部信息。最近的方法学发展聚焦于在检测不完善的情况下推断物种出现情况。在此,我们通过用一些额外的状态变量(例如是否繁殖幼崽)来描述已占据位置,对这些方法进行了扩展。我们的建模方法既处理了小于1的检测概率,也处理了状态分类中的不确定性。然后,我们将该方法应用于2004年繁殖季节在内华达山脉中部收集的加利福尼亚斑点鸮(Strix occidentalis occidentalis)的占有率和繁殖率数据,以说明该建模方法的实用性。鸮繁殖率的估计值高于简单估计值,这表明适当考虑检测和状态分类中的不确定性非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验