Suppr超能文献

生物大分子晶体中驱动固-固相变的机制。

The mechanism driving a solid-solid phase transition in a biomacromolecular crystal.

作者信息

Ramakrishnan Saminathan, Stagno Jason R, Heinz William F, Zuo Xiaobing, Yu Ping, Wang Yun-Xing

机构信息

Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.

Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.

出版信息

IUCrJ. 2021 Jun 17;8(Pt 4):655-664. doi: 10.1107/S2052252521004826. eCollection 2021 Jul 1.

Abstract

Solid-solid phase transitions (SSPTs) occur between distinguishable crystalline forms. Because of their importance in application and theory in materials science and condensed-matter physics, SSPTs have been studied most extensively in metallic alloys, inorganic salts and small organic molecular crystals, but much less so in biomacromolecular crystals. In general, the mechanisms of SSPTs at the atomic and molecular levels are not well understood. Here, the ordered molecular rearrangements in biomacromolecular crystals of the adenine riboswitch aptamer are described using real-time serial crystallography and solution atomic force microscopy. Large, ligand-induced conformational changes drive the initial phase transition from the apo unit cell (AUC) to the trans unit cell 1 (TUC1). During this transition, coaxial stacking of P1 duplexes becomes the dominant packing interface, whereas P2-P2 interactions are almost completely disrupted, resulting in 'floating' layers of molecules. The coupling points in TUC1 and their local conformational flexibility allow the molecules to reorganize to achieve the more densely packed and energetically favorable bound unit cell (BUC). This study thus reveals the interplay between the conformational changes and the crystal phases - the underlying mechanism that drives the phase transition. Using polarized video microscopy to monitor SSPTs in small crystals at high ligand concentration, the time window during which the major conformational changes take place was identified, and the kinetics have been simulated. Together, these results provide the spatiotemporal information necessary for informing time-resolved crystallography experiments. Moreover, this study illustrates a practical approach to characterization of SSPTs in transparent crystals.

摘要

固-固相变(SSPTs)发生在可区分的晶体形式之间。由于其在材料科学和凝聚态物理的应用及理论方面的重要性,SSPTs在金属合金、无机盐和小分子有机晶体中得到了最广泛的研究,但在生物大分子晶体中的研究则少得多。一般来说,SSPTs在原子和分子水平上的机制尚未得到很好的理解。在此,利用实时串行晶体学和溶液原子力显微镜描述了腺嘌呤核糖开关适配体生物大分子晶体中的有序分子重排。大的、配体诱导的构象变化驱动了从无配体晶胞(AUC)到反式晶胞1(TUC1)的初始相变。在这个转变过程中,P1双链体的同轴堆积成为主要的堆积界面,而P2-P2相互作用几乎完全被破坏,导致分子“漂浮”层。TUC1中的耦合点及其局部构象灵活性使分子能够重新组织,以实现更紧密堆积且能量上更有利的结合晶胞(BUC)。因此,这项研究揭示了构象变化与晶相之间的相互作用——驱动相变的潜在机制。利用偏振视频显微镜在高配体浓度下监测小晶体中的SSPTs,确定了主要构象变化发生的时间窗口,并对动力学进行了模拟。这些结果共同提供了为时间分辨晶体学实验提供信息所需的时空信息。此外,这项研究说明了一种表征透明晶体中SSPTs的实用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/176a/8256710/cfde5070ee94/m-08-00655-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验