Goehler Alexander, Hsu Tzu-Ming Harry, Seiglie Jacqueline A, Siedner Mark J, Lo Janet, Triant Virginia, Hsu John, Foulkes Andrea, Bassett Ingrid, Khorasani Ramin, Wexler Deborah J, Szolovits Peter, Meigs James B, Manne-Goehler Jennifer
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, Massachusetts, USA.
Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Open Forum Infect Dis. 2021 May 28;8(7):ofab275. doi: 10.1093/ofid/ofab275. eCollection 2021 Jul.
Obesity has been linked to severe clinical outcomes among people who are hospitalized with coronavirus disease 2019 (COVID-19). We tested the hypothesis that visceral adipose tissue (VAT) is associated with severe outcomes in patients hospitalized with COVID-19, independent of body mass index (BMI).
We analyzed data from the Massachusetts General Hospital COVID-19 Data Registry, which included patients admitted with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 infection from March 11 to May 4, 2020. We used a validated, fully automated artificial intelligence (AI) algorithm to quantify VAT from computed tomography (CT) scans during or before the hospital admission. VAT quantification took an average of 2 ± 0.5 seconds per patient. We dichotomized VAT as high and low at a threshold of ≥100 cm and used Kaplan-Meier curves and Cox proportional hazards regression to assess the relationship between VAT and death or intubation over 28 days, adjusting for age, sex, race, BMI, and diabetes status.
A total of 378 participants had CT imaging. Kaplan-Meier curves showed that participants with high VAT had a greater risk of the outcome compared with those with low VAT ( < .005), especially in those with BMI <30 kg/m ( < .005). In multivariable models, the adjusted hazard ratio (aHR) for high vs low VAT was unchanged (aHR, 1.97; 95% CI, 1.24-3.09), whereas BMI was no longer significant (aHR for obese vs normal BMI, 1.14; 95% CI, 0.71-1.82).
High VAT is associated with a greater risk of severe disease or death in COVID-19 and can offer more precise information to risk-stratify individuals beyond BMI. AI offers a promising approach to routinely ascertain VAT and improve clinical risk prediction in COVID-19.
肥胖与2019冠状病毒病(COVID-19)住院患者的严重临床结局相关。我们检验了以下假设:内脏脂肪组织(VAT)与COVID-19住院患者的严重结局相关,且独立于体重指数(BMI)。
我们分析了麻省总医院COVID-19数据登记处的数据,其中包括2020年3月11日至5月4日因聚合酶链反应确诊的严重急性呼吸综合征冠状病毒2感染而入院的患者。我们使用经过验证的全自动人工智能(AI)算法,在入院期间或入院前通过计算机断层扫描(CT)扫描对VAT进行量化。每位患者的VAT量化平均耗时2±0.5秒。我们将VAT≥100 cm作为阈值分为高和低两组,并使用Kaplan-Meier曲线和Cox比例风险回归来评估VAT与28天内死亡或插管之间的关系,同时对年龄、性别、种族、BMI和糖尿病状态进行校正。
共有378名参与者进行了CT成像。Kaplan-Meier曲线显示,与低VAT参与者相比,高VAT参与者出现该结局的风险更高(P<0.005),尤其是在BMI<30 kg/m²的参与者中(P<0.005)。在多变量模型中,高VAT与低VAT的校正风险比(aHR)不变(aHR,1.97;95%CI,1.24-3.09),而BMI不再具有统计学意义(肥胖与正常BMI的aHR,1.14;95%CI,0.71-1.82)。
高VAT与COVID-19患者发生严重疾病或死亡的风险更高相关,并且可以提供超出BMI的更精确信息用于对个体进行风险分层。人工智能为常规确定VAT和改善COVID-19的临床风险预测提供了一种有前景的方法。