Suppr超能文献

基于机器学习和深度学习的 COVID-19 诊断:综述。

Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review.

机构信息

Institute of ICT, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh.

出版信息

Curr Med Imaging. 2021;17(12):1403-1418. doi: 10.2174/1573405617666210713113439.

Abstract

BACKGROUND

This paper provides a systematic review of the application of Artificial Intelligence (AI) in the form of Machine Learning (ML) and Deep Learning (DL) techniques in fighting against the effects of novel coronavirus disease (COVID-19).

OBJECTIVE & METHODS: The objective is to perform a scoping review on AI for COVID-19 using preferred reporting items of systematic reviews and meta-analysis (PRISMA) guidelines. A literature search was performed for relevant studies published from 1 January 2020 till 27 March 2021. Out of 4050 research papers available in reputed publishers, a full-text review of 440 articles was done based on the keywords of AI, COVID-19, ML, forecasting, DL, X-ray, and Computed Tomography (CT). Finally, 52 articles were included in the result synthesis of this paper. As part of the review, different ML regression methods were reviewed first in predicting the number of confirmed and death cases. Secondly, a comprehensive survey was carried out on the use of ML in classifying COVID-19 patients. Thirdly, different datasets on medical imaging were compared in terms of the number of images, number of positive samples and number of classes in the datasets. The different stages of the diagnosis, including preprocessing, segmentation and feature extraction were also reviewed. Fourthly, the performance results of different research papers were compared to evaluate the effectiveness of DL methods on different datasets.

RESULTS

Results show that residual neural network (ResNet-18) and densely connected convolutional network (DenseNet 169) exhibit excellent classification accuracy for X-ray images, while DenseNet-201 has the maximum accuracy in classifying CT scan images. This indicates that ML and DL are useful tools in assisting researchers and medical professionals in predicting, screening and detecting COVID-19.

CONCLUSION

Finally, this review highlights the existing challenges, including regulations, noisy data, data privacy, and the lack of reliable large datasets, then provides future research directions in applying AI in managing COVID-19.

摘要

背景

本文对人工智能(AI)在机器学习(ML)和深度学习(DL)技术方面的应用进行了系统综述,以对抗新型冠状病毒病(COVID-19)的影响。

目的与方法

目的是根据系统评价和荟萃分析的首选报告项目(PRISMA)指南,对 COVID-19 的 AI 进行范围界定审查。从 2020 年 1 月 1 日至 2021 年 3 月 27 日,对发表在知名出版商的相关研究进行了文献检索。在 4050 篇研究论文中,根据 AI、COVID-19、ML、预测、DL、X 射线和计算机断层扫描(CT)等关键词,对 440 篇文章进行了全文审查。最后,将 52 篇文章纳入本文的结果综合。作为综述的一部分,首先回顾了不同的 ML 回归方法在预测确诊病例和死亡病例数量方面的应用。其次,对 ML 在 COVID-19 患者分类中的应用进行了全面调查。第三,比较了不同医学成像数据集在图像数量、阳性样本数量和数据集类别数量方面的差异。还回顾了诊断的不同阶段,包括预处理、分割和特征提取。第四,比较了不同研究论文的性能结果,以评估 DL 方法在不同数据集上的有效性。

结果

结果表明,残差神经网络(ResNet-18)和密集连接卷积网络(DenseNet 169)在 X 射线图像分类中表现出优异的分类精度,而 DenseNet-201 在 CT 扫描图像分类中具有最高的精度。这表明 ML 和 DL 是帮助研究人员和医疗专业人员进行 COVID-19 预测、筛查和检测的有用工具。

结论

最后,本综述强调了现有挑战,包括法规、嘈杂数据、数据隐私和缺乏可靠的大型数据集,并提供了在管理 COVID-19 中应用 AI 的未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验