Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Rd, Shanghai 200032, China.
Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
AJR Am J Roentgenol. 2021 Sep;217(3):664-675. doi: 10.2214/AJR.20.23195. Epub 2021 Jul 14.
The purpose of our study was to develop a radiomics model based on preoperative MRI and clinical information for predicting recurrence-free survival (RFS) in patients with advanced high-grade serous ovarian carcinoma (HGSOC). This retrospective study enrolled 117 patients with HGSOC, including 90 patients with recurrence and 27 without recurrence; 1046 radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images using a manual segmentation method. L1 regularization-based least absolute shrinkage and selection operator (LASSO) regression was performed to select features, and the synthetic minority oversampling technique (SMOTE) was used to balance our dataset. A support vector machine (SVM) classifier was used to build the classification model. To validate the performance of the proposed models, we applied a leave-one-out cross-validation method to train and test the classifier. Cox proportional hazards regression, Harrell concordance index (C-index), and Kaplan-Meier plots analysis were used to evaluate the associations between radiomics signatures and RFS. The fusion radiomics-based model yielded a significantly higher AUC value of 0.85 in evaluating RFS than the model using contrast-enhanced T1-weighted imaging features alone or T2-weighted imaging features alone (AUC = 0.79 and 0.74 and = .02 and .01, respectively). Kaplan-Meier survival curves showed significant differences between high and low recurrence risk in patients with HGSOC by different models. The fusion model combining radiomics features and clinical information showed higher performance than the clinical model (C-index = 0.62 and 0.60, respectively). The proposed MRI-based radiomics signatures may provide a potential way to develop a prediction model and can help identify patients with advanced HGSOC who have a high risk of recurrence.
我们的研究目的是开发一种基于术前 MRI 和临床信息的放射组学模型,用于预测晚期高级别浆液性卵巢癌(HGSOC)患者的无复发生存率(RFS)。这项回顾性研究纳入了 117 例 HGSOC 患者,其中 90 例患者复发,27 例患者无复发;使用手动分割方法从 T2 加权图像和对比增强 T1 加权图像中提取了 1046 个放射组学特征。使用基于 L1 正则化的最小绝对收缩和选择算子(LASSO)回归进行特征选择,并使用合成少数过采样技术(SMOTE)平衡我们的数据集。使用支持向量机(SVM)分类器构建分类模型。为了验证所提出模型的性能,我们采用了留一交叉验证方法来训练和测试分类器。Cox 比例风险回归、哈雷尔一致性指数(C-index)和 Kaplan-Meier 图分析用于评估放射组学特征与 RFS 之间的关联。融合放射组学模型在评估 RFS 方面的 AUC 值显著高于仅使用对比增强 T1 加权成像特征或 T2 加权成像特征的模型(AUC = 0.79 和 0.74,分别)( =.02 和.01)。Kaplan-Meier 生存曲线显示不同模型下 HGSOC 患者的高复发风险和低复发风险之间存在显著差异。融合放射组学特征和临床信息的模型比临床模型具有更高的性能(C-index = 0.62 和 0.60,分别)。基于 MRI 的放射组学特征可能为开发预测模型提供一种潜在方法,并有助于识别具有高复发风险的晚期 HGSOC 患者。