Suppr超能文献

受生物启发的纳升级富含透明质酸的核壳水凝胶微胶囊中的 3D 培养将高度多能的人诱导多能干细胞分离出来。

Bioinspired 3D Culture in Nanoliter Hyaluronic Acid-Rich Core-Shell Hydrogel Microcapsules Isolates Highly Pluripotent Human iPSCs.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.

Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.

出版信息

Small. 2021 Aug;17(33):e2102219. doi: 10.1002/smll.202102219. Epub 2021 Jul 14.

Abstract

Human induced pluripotent stem cells (iPSCs) are ideal for developing personalized medicine. However, the spontaneous differentiation of human iPSCs under conventional 2D and 3D cultures results in significant heterogeneity and compromised quality. Therefore, a method for effectively isolating and expanding high-quality human iPSCs is critically needed. Here, a biomimetic microencapsulation approach for isolating and culturing high-quality human iPSCs is reported. This is inspired by the natural proliferation and development of blastomeres into early blastocyst where the early embryonic stem cells-containing core is enclosed in a semipermeable hydrogel shell known as the zona pellucida (Zona). Blastomere cluster-like human iPSC clusters are encapsulated in a miniaturized (≈10 nanoliter) hyaluronic acid (HA)-rich core of microcapsules with a semipermeable Zona-like hydrogel shell and subsequently cultured to form pluripotent human iPSC spheroids with significantly improved quality. This is indicated by their high expression of pluripotency markers and highly efficient 3D cardiac differentiation. In particular, HA is found to be crucial for isolating the high-quality human iPSCs with the biomimetic core-shell microencapsulation culture. Interestingly, the isolated human iPSCs can maintain high pluripotency even after being cultured again in 2D. These discoveries and the bioinspired culture method may be valuable to facilitate the human iPSC-based personalized medicine.

摘要

人诱导多能干细胞(iPSCs)非常适合开发个性化药物。然而,在传统的 2D 和 3D 培养下,人 iPSCs 的自发分化会导致显著的异质性和质量受损。因此,迫切需要一种有效的方法来分离和扩增高质量的人 iPSCs。在这里,我们报道了一种仿生微囊化方法,用于分离和培养高质量的人 iPSCs。这是受早期囊胚中卵裂球的自然增殖和发育的启发,其中含有早期胚胎干细胞的核心被包裹在称为透明带(Zona)的半透性水凝胶壳中。类卵裂球簇的人 iPSC 簇被包裹在微型(≈10 纳升)富含透明质酸(HA)的微胶囊的核心中,具有半透性的 Zona 样水凝胶壳,随后进行培养以形成具有显著改善质量的多能性人 iPSC 球体。这可以通过其高水平的多能性标志物表达和高效的 3D 心脏分化来证明。特别是,发现 HA 对于使用仿生核壳微囊化培养分离高质量的人 iPSCs 至关重要。有趣的是,即使在再次进行 2D 培养后,分离的人 iPSCs 也能保持高多能性。这些发现和仿生培养方法可能有助于促进基于人 iPSC 的个性化药物的发展。

相似文献

4
Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.
Acta Biomater. 2015 Sep;24:159-71. doi: 10.1016/j.actbio.2015.06.026. Epub 2015 Jun 23.
6
Increased maturation of iPSC-derived neurons in a hydrogel-based 3D culture.
J Neurosci Methods. 2021 Aug 1;360:109254. doi: 10.1016/j.jneumeth.2021.109254. Epub 2021 Jun 11.
7
Suspension culture improves iPSC expansion and pluripotency phenotype.
Stem Cell Res Ther. 2023 Jun 6;14(1):154. doi: 10.1186/s13287-023-03382-9.
8
Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells.
Acta Biomater. 2017 Feb;49:284-295. doi: 10.1016/j.actbio.2016.12.001. Epub 2016 Dec 5.
10
Rock inhibitor may compromise human induced pluripotent stem cells for cardiac differentiation in 3D.
Bioact Mater. 2021 Aug 2;9:508-522. doi: 10.1016/j.bioactmat.2021.07.013. eCollection 2022 Mar.

引用本文的文献

2
Insights on the differences between two‑ and three‑dimensional culture systems in tumor models (Review).
Int J Mol Med. 2025 Nov;56(5). doi: 10.3892/ijmm.2025.5626. Epub 2025 Sep 5.
3
Stem cells in the treatment of myocardial injury-induced cardiomyopathy: mechanisms and efficient utilization strategies.
Front Pharmacol. 2025 Jun 18;16:1600604. doi: 10.3389/fphar.2025.1600604. eCollection 2025.
4
Application of human cardiac organoids in cardiovascular disease research.
Front Cell Dev Biol. 2025 Mar 31;13:1564889. doi: 10.3389/fcell.2025.1564889. eCollection 2025.
5
Macrophage microRNA-146a is a central regulator of the foreign body response to biomaterial implants.
Biomaterials. 2025 Mar;314:122855. doi: 10.1016/j.biomaterials.2024.122855. Epub 2024 Sep 29.
6
Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier.
Nat Biomed Eng. 2025 Apr;9(4):566-598. doi: 10.1038/s41551-024-01250-2. Epub 2024 Sep 20.
7
Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications.
Pharmaceutics. 2023 Oct 23;15(10):2514. doi: 10.3390/pharmaceutics15102514.
8
3D cell culture model: From ground experiment to microgravity study.
Front Bioeng Biotechnol. 2023 Mar 24;11:1136583. doi: 10.3389/fbioe.2023.1136583. eCollection 2023.
10
Hydrogels: Properties and Applications in Biomedicine.
Molecules. 2022 May 2;27(9):2902. doi: 10.3390/molecules27092902.

本文引用的文献

1
Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles.
ACS Biomater Sci Eng. 2021 Jun 14;7(6):2043-2063. doi: 10.1021/acsbiomaterials.1c00083. Epub 2021 Apr 19.
3
Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering.
Adv Ther (Weinh). 2020 Mar;3(3). doi: 10.1002/adtp.201900182. Epub 2020 Feb 3.
4
Stem-cell-based embryo models for fundamental research and translation.
Nat Mater. 2021 Feb;20(2):132-144. doi: 10.1038/s41563-020-00829-9. Epub 2020 Nov 16.
5
Bioprocess Technologies that Preserve the Quality of iPSCs.
Trends Biotechnol. 2020 Oct;38(10):1128-1140. doi: 10.1016/j.tibtech.2020.03.006. Epub 2020 Apr 5.
6
Bioinspired One Cell Culture Isolates Highly Tumorigenic and Metastatic Cancer Stem Cells Capable of Multilineage Differentiation.
Adv Sci (Weinh). 2020 Apr 28;7(11):2000259. doi: 10.1002/advs.202000259. eCollection 2020 Jun.
7
Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells.
Cell. 2019 May 2;177(4):910-924.e22. doi: 10.1016/j.cell.2019.03.013. Epub 2019 Apr 11.
8
Induced pluripotent stem cells in disease modelling and drug discovery.
Nat Rev Genet. 2019 Jul;20(7):377-388. doi: 10.1038/s41576-019-0100-z.
10
Highly efficient reprogramming and characterization of induced pluripotent stem cells by using a microwell array.
Tissue Eng Regen Med. 2016 Dec 17;13(6):691-700. doi: 10.1007/s13770-016-0015-0. eCollection 2016 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验