Suppr超能文献

在一家符合联邦资质的社区健康中心患者群体中,评估社会需求评估数据与心脏代谢健康状况之间的关联。

Evaluating the association of social needs assessment data with cardiometabolic health status in a federally qualified community health center patient population.

作者信息

Drake Connor, Lian Tyler, Trogdon Justin G, Edelman David, Eisenson Howard, Weinberger Morris, Reiter Kristin, Shea Christopher M

机构信息

Department of Population Health Sciences, Duke University School of Medicine, 215 Morris Street, Durham, NC, 27701, USA.

Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC, 27519, USA.

出版信息

BMC Cardiovasc Disord. 2021 Jul 14;21(1):342. doi: 10.1186/s12872-021-02149-5.

Abstract

BACKGROUND

Health systems are increasingly using standardized social needs screening and response protocols including the Protocol for Responding to and Assessing Patients' Risks, Assets, and Experiences (PRAPARE) to improve population health and equity; despite established relationships between the social determinants of health and health outcomes, little is known about the associations between standardized social needs assessment information and patients' clinical condition.

METHODS

In this cross-sectional study, we examined the relationship between social needs screening assessment data and measures of cardiometabolic clinical health from electronic health records data using two modelling approaches: a backward stepwise logistic regression and a least absolute selection and shrinkage operation (LASSO) logistic regression. Primary outcomes were dichotomized cardiometabolic measures related to obesity, hypertension, and atherosclerotic cardiovascular disease (ASCVD) 10-year risk. Nested models were built to evaluate the utility of social needs assessment data from PRAPARE for risk prediction, stratification, and population health management.

RESULTS

Social needs related to lack of housing, unemployment, stress, access to medicine or health care, and inability to afford phone service were consistently associated with cardiometabolic risk across models. Model fit, as measured by the c-statistic, was poor for predicting obesity (logistic = 0.586; LASSO = 0.587), moderate for stage 1 hypertension (logistic = 0.703; LASSO = 0.688), and high for borderline ASCVD risk (logistic = 0.954; LASSO = 0.950).

CONCLUSIONS

Associations between social needs assessment data and clinical outcomes vary by cardiometabolic condition. Social needs assessment data may be useful for prospectively identifying patients at heightened cardiometabolic risk; however, there are limits to the utility of social needs data for improving predictive performance.

摘要

背景

卫生系统越来越多地使用标准化的社会需求筛查和应对方案,包括《患者风险、资产和经历应对与评估协议》(PRAPARE),以改善人群健康和公平性;尽管健康的社会决定因素与健康结果之间已确立了关系,但对于标准化社会需求评估信息与患者临床状况之间的关联却知之甚少。

方法

在这项横断面研究中,我们使用两种建模方法,即向后逐步逻辑回归和最小绝对收缩选择算子(LASSO)逻辑回归,研究了社会需求筛查评估数据与电子健康记录数据中的心脏代谢临床健康指标之间的关系。主要结局是与肥胖、高血压和动脉粥样硬化性心血管疾病(ASCVD)10年风险相关的二元心脏代谢指标。构建嵌套模型以评估来自PRAPARE的社会需求评估数据在风险预测、分层和人群健康管理中的效用。

结果

在各个模型中,与住房不足、失业、压力、获得药品或医疗保健的机会以及无力支付电话服务相关的社会需求与心脏代谢风险始终相关。以c统计量衡量的模型拟合度,在预测肥胖方面较差(逻辑回归=0.586;LASSO=0.587),在预测1期高血压方面中等(逻辑回归=0.703;LASSO=0.688),在预测临界ASCVD风险方面较高(逻辑回归=0.954;LASSO=0.950)。

结论

社会需求评估数据与临床结局之间的关联因心脏代谢状况而异。社会需求评估数据可能有助于前瞻性地识别心脏代谢风险较高的患者;然而,社会需求数据在改善预测性能方面的效用存在局限性。

相似文献

6
An intensive follow-up in subjects with cardiometabolic high-risk.
Nutr Metab Cardiovasc Dis. 2021 Sep 22;31(10):2860-2869. doi: 10.1016/j.numecd.2021.06.011. Epub 2021 Jun 25.
10
Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome.
J Am Coll Cardiol. 2013 Aug 13;62(7):569-76. doi: 10.1016/j.jacc.2013.05.045. Epub 2013 Jun 12.

引用本文的文献

1
Social Phenotyping for Cardiovascular Risk Stratification in Electronic Health Registries.
Curr Atheroscler Rep. 2024 Sep;26(9):485-497. doi: 10.1007/s11883-024-01222-6. Epub 2024 Jul 8.
3
Screening for social determinants of health among populations at risk for MASLD: a scoping review.
Front Public Health. 2024 Apr 10;12:1332870. doi: 10.3389/fpubh.2024.1332870. eCollection 2024.
4
A Randomized Controlled Trial to Improve Unmet Social Needs and Clinical Outcomes Among Adults with Diabetes.
J Gen Intern Med. 2024 Oct;39(13):2415-2424. doi: 10.1007/s11606-024-08708-8. Epub 2024 Mar 11.
5
Uses of Social Determinants of Health Data to Address Cardiovascular Disease and Health Equity: A Scoping Review.
J Am Heart Assoc. 2023 Nov 7;12(21):e030571. doi: 10.1161/JAHA.123.030571. Epub 2023 Nov 6.
7
Association of Unmet Social Needs With Metformin Use Among Patients With Type 2 Diabetes.
Diabetes Care. 2023 Nov 1;46(11):2044-2049. doi: 10.2337/dc23-0448.
8
Impact of Social Determinants of Health in Spine Surgery.
Curr Rev Musculoskelet Med. 2023 Jan;16(1):24-32. doi: 10.1007/s12178-022-09811-1. Epub 2022 Dec 14.
9
Addressing Hypertension Outcomes Using Telehealth and Population Health Managers: Adaptations and Implementation Considerations.
Curr Hypertens Rep. 2022 Aug;24(8):267-284. doi: 10.1007/s11906-022-01193-6. Epub 2022 May 10.
10
Association of Social Needs and Healthcare Utilization Among Medicare and Medicaid Beneficiaries in the Accountable Health Communities Model.
J Gen Intern Med. 2022 Nov;37(14):3692-3699. doi: 10.1007/s11606-022-07403-w. Epub 2022 Feb 7.

本文引用的文献

1
Collecting Social Determinants of Health Data in the Clinical Setting: Findings from National PRAPARE Implementation.
J Health Care Poor Underserved. 2020;31(2):1018-1035. doi: 10.1353/hpu.2020.0075.
3
Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.
Circulation. 2020 Mar 3;141(9):e139-e596. doi: 10.1161/CIR.0000000000000757. Epub 2020 Jan 29.
4
Massachusetts Community-Based Organization Perspectives on Medicaid Redesign.
Am J Prev Med. 2019 Dec;57(6 Suppl 1):S74-S81. doi: 10.1016/j.amepre.2019.07.017.
5
Psychometric and Pragmatic Properties of Social Risk Screening Tools: A Systematic Review.
Am J Prev Med. 2019 Dec;57(6 Suppl 1):S13-S24. doi: 10.1016/j.amepre.2019.07.012.
7
North Carolina's Transformation to Medicaid Managed Care.
N C Med J. 2019 Sep-Oct;80(5):277-279. doi: 10.18043/ncm.80.5.277.
8
Achieving Health Equity in Hypertension Management Through Addressing the Social Determinants of Health.
Curr Hypertens Rep. 2019 Jun 12;21(8):58. doi: 10.1007/s11906-019-0962-7.
9
Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database.
J Card Fail. 2019 Jun;25(6):479-483. doi: 10.1016/j.cardfail.2019.01.018. Epub 2019 Feb 6.
10
Adoption of Social Determinants of Health EHR Tools by Community Health Centers.
Ann Fam Med. 2018 Sep;16(5):399-407. doi: 10.1370/afm.2275.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验