Suppr超能文献

收缩-扩张微通道中的惯性微流体:综述

Inertial microfluidics in contraction-expansion microchannels: A review.

作者信息

Jiang Di, Ni Chen, Tang Wenlai, Huang Di, Xiang Nan

机构信息

College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China.

School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China.

出版信息

Biomicrofluidics. 2021 Jul 2;15(4):041501. doi: 10.1063/5.0058732. eCollection 2021 Jul.

Abstract

Inertial microfluidics has brought enormous changes in the conventional cell/particle detection process and now become the main trend of sample pretreatment with outstanding throughput, low cost, and simple control method. However, inertial microfluidics in a straight microchannel is not enough to provide high efficiency and satisfying performance for cell/particle separation. A contraction-expansion microchannel is a widely used and multifunctional channel pattern involving inertial microfluidics, secondary flow, and the vortex in the chamber. The strengthened inertial microfluidics can help us to focus particles with a shorter channel length and less processing time. Both the vortex in the chamber and the secondary flow in the main channel can trap the target particles or separate particles based on their sizes more precisely. The contraction-expansion microchannels are also capable of combining with a curved, spiral, or serpentine channel to further improve the separation performance. Some recent studies have focused on the viscoelastic fluid that utilizes both elastic forces and inertial forces to separate different size particles precisely with a relatively low flow rate for the vulnerable cells. This article comprehensively reviews various contraction-expansion microchannels with Newtonian and viscoelastic fluids for particle focusing, separation, and microfluid mixing and provides particle manipulation performance data analysis for the contraction-expansion microchannel design.

摘要

惯性微流控技术给传统的细胞/颗粒检测过程带来了巨大变革,如今已凭借出色的通量、低成本以及简单的控制方法成为样品预处理的主流趋势。然而,直微通道中的惯性微流控技术在细胞/颗粒分离方面尚不足以提供高效且令人满意的性能。收缩-扩张微通道是一种广泛应用的多功能通道模式,涉及惯性微流控、二次流以及腔室内的涡流。强化的惯性微流控技术能够帮助我们在更短的通道长度和更少的处理时间内实现颗粒聚焦。腔室内的涡流和主通道中的二次流都能够捕获目标颗粒或更精确地根据颗粒大小进行分离。收缩-扩张微通道还能够与弯曲、螺旋或蛇形通道相结合,进一步提升分离性能。近期的一些研究聚焦于粘弹性流体,这种流体利用弹力和惯性力在相对较低的流速下精确分离不同大小的颗粒,适用于脆弱细胞。本文全面综述了用于颗粒聚焦、分离和微流体混合的牛顿流体和粘弹性流体的各种收缩-扩张微通道,并为收缩-扩张微通道设计提供颗粒操控性能数据分析。

相似文献

1
Inertial microfluidics in contraction-expansion microchannels: A review.
Biomicrofluidics. 2021 Jul 2;15(4):041501. doi: 10.1063/5.0058732. eCollection 2021 Jul.
2
A Review of Secondary Flow in Inertial Microfluidics.
Micromachines (Basel). 2020 Apr 28;11(5):461. doi: 10.3390/mi11050461.
5
High throughput viscoelastic particle focusing and separation in spiral microchannels.
Sci Rep. 2021 Apr 19;11(1):8467. doi: 10.1038/s41598-021-88047-4.
6
Channel innovations for inertial microfluidics.
Lab Chip. 2020 Oct 7;20(19):3485-3502. doi: 10.1039/d0lc00714e. Epub 2020 Sep 10.
7
High-efficiency extraction of target particles in viscoelastic contraction-expansion microchannels.
Electrophoresis. 2024 Jul;45(13-14):1233-1242. doi: 10.1002/elps.202300251. Epub 2023 Dec 31.
8
Evolution of focused streams for viscoelastic flow in spiral microchannels.
Microsyst Nanoeng. 2023 Jun 6;9:73. doi: 10.1038/s41378-023-00520-4. eCollection 2023.
9
Fundamentals and applications of inertial microfluidics: a review.
Lab Chip. 2016 Jan 7;16(1):10-34. doi: 10.1039/c5lc01159k.
10
Viscoelastic microfluidics: progress and challenges.
Microsyst Nanoeng. 2020 Dec 14;6:113. doi: 10.1038/s41378-020-00218-x. eCollection 2020.

引用本文的文献

1
Isolation methods of exosomes derived from dental stem cells.
Int J Oral Sci. 2025 Jun 16;17(1):50. doi: 10.1038/s41368-025-00370-y.
2
Isolation Techniques of Micro/Nano-Scaled Species for Biomedical Applications.
Adv Sci (Weinh). 2025 Jul;12(26):e2414109. doi: 10.1002/advs.202414109. Epub 2025 May 24.
3
Integrated Microfluidics for Single-Cell Separation and On-Chip Analysis: Novel Applications and Recent Advances.
Small Sci. 2024 Feb 2;4(4):2300206. doi: 10.1002/smsc.202300206. eCollection 2024 Apr.
5
Vortex sorting of rare particles/cells in microcavities: A review.
Biomicrofluidics. 2024 Apr 1;18(2):021504. doi: 10.1063/5.0174938. eCollection 2024 Mar.
7
Sheathless inertial particle focusing methods within microfluidic devices: a review.
Front Bioeng Biotechnol. 2024 Jan 8;11:1331968. doi: 10.3389/fbioe.2023.1331968. eCollection 2023.
8
Synchronous oscillatory electro-inertial focusing of microparticles.
Biomicrofluidics. 2023 Dec 12;17(6):064105. doi: 10.1063/5.0162368. eCollection 2023 Dec.
9
Microfluidic Mixing: A Physics-Oriented Review.
Micromachines (Basel). 2023 Sep 25;14(10):1827. doi: 10.3390/mi14101827.
10
High-Efficiency Inertial Separation of Microparticles Using Elevated Columned Reservoirs and Vortex Technique for Lab-on-a-Chip Applications.
ACS Omega. 2023 Jul 25;8(31):28628-28639. doi: 10.1021/acsomega.3c03136. eCollection 2023 Aug 8.

本文引用的文献

2
Inertial Microfluidics-Based Separation of Microalgae Using a Contraction-Expansion Array Microchannel.
Micromachines (Basel). 2021 Jan 19;12(1):97. doi: 10.3390/mi12010097.
3
Inertial microfluidics: Recent advances.
Electrophoresis. 2020 Dec;41(24):2166-2187. doi: 10.1002/elps.202000134. Epub 2020 Oct 21.
4
Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids.
Micromachines (Basel). 2020 Sep 30;11(10):908. doi: 10.3390/mi11100908.
5
Channel innovations for inertial microfluidics.
Lab Chip. 2020 Oct 7;20(19):3485-3502. doi: 10.1039/d0lc00714e. Epub 2020 Sep 10.
6
7
Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models.
Anal Chem. 2020 Sep 1;92(17):11558-11564. doi: 10.1021/acs.analchem.0c00273. Epub 2020 Jul 9.
8
Separation of exfoliated tumor cells from viscoelastic pleural effusion using a microfluidic sandwich structure.
Anal Bioanal Chem. 2020 Sep;412(22):5513-5523. doi: 10.1007/s00216-020-02771-w. Epub 2020 Jun 24.
9
A Review of Secondary Flow in Inertial Microfluidics.
Micromachines (Basel). 2020 Apr 28;11(5):461. doi: 10.3390/mi11050461.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验