Nasiri Rohollah, Shamloo Amir, Akbari Javad, Tebon Peyton, R Dokmeci Mehmet, Ahadian Samad
Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran.
Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA.
Micromachines (Basel). 2020 Jul 20;11(7):699. doi: 10.3390/mi11070699.
Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a micromixer unit for cell lysis on a rotating disk platform. For this purpose, an inertial microfluidic device was designed for the separation of target cells by using contraction-expansion microchannel arrays. Additionally, a micromixer was incorporated to mix separated target cells with the cell lysis chemical reagent to dissolve their membranes to facilitate further assays. Our numerical simulation approach was validated for both cell separation and micromixer units and corroborates existing experimental results. In the first compartment of the proposed device (cell separation unit), several simulations were performed at different angular velocities from 500 rpm to 3000 rpm to find the optimum angular velocity for maximum separation efficiency. By using the proposed inertial separation approach, CTCs, were successfully separated from white blood cells (WBCs) with high efficiency (90%) at an angular velocity of 2000 rpm. Furthermore, a serpentine channel with rectangular obstacles was designed to achieve a highly efficient micromixer unit with high mixing quality (98%) for isolated CTCs lysis at 2000 rpm.
从血液样本中分离循环肿瘤细胞(CTC)并随后从这些细胞中提取DNA在癌症研究和药物发现中起着至关重要的作用。微流控技术是一种通用技术,已被应用于为生物医学应用创造特定解决方案,如细胞分离与混合、液滴生成、生物打印以及芯片上的器官。在光盘上制作的离心微流控生物芯片在处理用于即时诊断的生物样本方面显示出巨大潜力。本研究调查了一种集成微流控装置的设计和数值模拟,该装置包括一个用于从血液样本中分离CTC的细胞分离单元和一个用于在旋转盘平台上进行细胞裂解的微混合器单元。为此,设计了一种惯性微流控装置,通过收缩 - 扩张微通道阵列分离目标细胞。此外,加入了一个微混合器,将分离出的目标细胞与细胞裂解化学试剂混合,以溶解其细胞膜,便于进一步检测。我们的数值模拟方法在细胞分离和微混合器单元方面都得到了验证,并证实了现有的实验结果。在所提出的装置的第一个隔室(细胞分离单元)中,在500转/分钟至3000转/分钟的不同角速度下进行了几次模拟,以找到实现最大分离效率的最佳角速度。通过使用所提出的惯性分离方法,在2000转/分钟的角速度下,CTC成功地从白细胞(WBC)中高效(约90%)分离出来。此外,设计了一个带有矩形障碍物的蛇形通道,以实现一个高效的微混合器单元,在2000转/分钟时对分离出的CTC裂解具有高混合质量(约98%)。