Suppr超能文献

微流体混合:一篇面向物理学的综述。

Microfluidic Mixing: A Physics-Oriented Review.

作者信息

Saravanakumar Sri Manikandan, Cicek Paul-Vahe

机构信息

Microtechnologies Integration & Convergence Research Group, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3Y7, Canada.

出版信息

Micromachines (Basel). 2023 Sep 25;14(10):1827. doi: 10.3390/mi14101827.

Abstract

This comprehensive review paper focuses on the intricate physics of microfluidics and their application in micromixing techniques. Various methods for enhancing mixing in microchannels are explored, with a keen emphasis on the underlying fluid dynamics principles. Geometrical micromixers employ complex channel designs to induce fluid-fluid interface distortions, yielding efficient mixing while retaining manufacturing simplicity. These methods synergize effectively with external techniques, showcasing promising potential. Electrohydrodynamics harnesses electrokinetic phenomena like electroosmosis, electrophoresis, and electrothermal effects. These methods offer dynamic control over mixing parameters via applied voltage, frequency, and electrode positioning, although power consumption and heating can be drawbacks. Acoustofluidics leverages acoustic waves to drive microstreaming, offering localized yet far-reaching effects. Magnetohydrodynamics, though limited in applicability to certain fluids, showcases potential by utilizing magnetic fields to propel mixing. Selecting an approach hinges on trade-offs among complexity, efficiency, and compatibility with fluid properties. Understanding the physics of fluid behavior and rationalizing these techniques aids in tailoring the most suitable micromixing solution. In a rapidly advancing field, this paper provides a consolidated understanding of these techniques, facilitating the informed choice of approach for specific microfluidic mixing needs.

摘要

这篇综合性综述论文聚焦于微流体的复杂物理特性及其在微混合技术中的应用。探讨了多种增强微通道内混合的方法,重点关注其背后的流体动力学原理。几何微混合器采用复杂的通道设计来引发流体 - 流体界面的扭曲,在保持制造简易性的同时实现高效混合。这些方法与外部技术有效协同,展现出可观的潜力。电流体动力学利用诸如电渗、电泳和电热效应等电动现象。这些方法可通过施加电压、频率和电极定位对混合参数进行动态控制,不过功耗和发热可能是其缺点。声流体动力学利用声波驱动微流,产生局部但影响深远的效果。磁流体动力学虽然在应用于某些流体时存在局限性,但通过利用磁场推动混合展现出潜力。选择一种方法取决于在复杂性、效率以及与流体特性的兼容性之间进行权衡。理解流体行为的物理原理并使这些技术合理化有助于定制最合适的微混合解决方案。在这个快速发展的领域,本文提供了对这些技术的综合理解,便于针对特定的微流体混合需求明智地选择方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5412/10609072/d0ca91b519d5/micromachines-14-01827-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验