Suppr超能文献

基于语义分割的平面光学元件表面缺陷实时自动光学检测平台。

Automatic optical inspection platform for real-time surface defects detection on plane optical components based on semantic segmentation.

出版信息

Appl Opt. 2021 Jul 1;60(19):5496-5506. doi: 10.1364/AO.424547.

Abstract

The tendency to increase the accuracy and quality of optical parts inspection can be observed all over the world. The imperfection of manufacturing techniques can cause different defects on the optical component surface, making surface defects inspection a crucial part of the manufacturing of optical components. Currently, the inspection of lenses, filters, mirrors, and other optical components is performed by human inspectors. However, human-based inspections are time-consuming, subjective, and incompatible with a highly efficient high-quality digital workflow. Moreover, they cannot meet the complex criteria of ISO 10110-7 for the quality pass and fail optical element samples. To meet the high demand for high-quality products, intelligent visual inspection systems are being used in many manufacturing processes. Automated surface imperfection detection based on machine learning has become a fascinating and promising area of research, with a great direct impact on different visual inspection applications. In this paper, an optical inspection platform combining parallel deep learning-based image-processing approaches with a high-resolution optomechanical module was developed to detect surface defects on optical plane components. The system involves the mechanical modules, the illumination and imaging modules, and the machine vision algorithm. Dark-field images were acquired using a 2448×2048-pixel line-scanning CMOS camera with 3.45 µm per-pixel resolution. Convolutional neural networks and semantic segmentation were used for a machine vision algorithm to detect and classify defects on captured images of optical bandpass filters. The experimental results on different bandpass filter samples have shown the best performance compared to traditional methods by reaching an impressive detection speed of 0.07 s per image and an overall detection pixel accuracy of 0.923.

摘要

在世界各地都可以观察到提高光学零件检测精度和质量的趋势。制造技术的不完善会导致光学元件表面出现不同的缺陷,因此表面缺陷检测成为制造光学元件的关键环节。目前,透镜、滤波器、反射镜和其他光学元件的检测由人工检查员进行。然而,基于人工的检测既耗时又主观,并且与高效的高质量数字工作流程不兼容。此外,它们无法满足 ISO 10110-7 对质量合格和不合格光学元件样本的复杂标准。为了满足对高质量产品的高需求,许多制造过程都在使用智能视觉检测系统。基于机器学习的自动表面缺陷检测已成为一个引人关注且极具前景的研究领域,对不同的视觉检测应用具有直接的重大影响。在本文中,开发了一个结合基于并行深度学习的图像处理方法和高分辨率光机械模块的光学检测平台,用于检测光学平面元件的表面缺陷。该系统包括机械模块、照明和成像模块以及机器视觉算法。使用具有 3.45 µm 像素分辨率的 2448×2048 像素线扫描 CMOS 相机获取暗场图像。卷积神经网络和语义分割被用于机器视觉算法,以检测和分类捕获的带通滤波器图像上的缺陷。与传统方法相比,不同带通滤波器样本的实验结果表明,该方法的检测速度达到了 0.07 秒/张,整体检测像素准确率达到了 0.923,性能最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验