Suppr超能文献

相似文献

1
Assessing conservation of alternative splicing with evolutionary splicing graphs.
Genome Res. 2021 Aug;31(8):1462-1473. doi: 10.1101/gr.274696.120. Epub 2021 Jun 15.
2
ASES: visualizing evolutionary conservation of alternative splicing in proteins.
Bioinformatics. 2022 Apr 28;38(9):2615-2616. doi: 10.1093/bioinformatics/btac105.
3
Identifying genes with conserved splicing structure and orthologous isoforms in human, mouse and dog.
BMC Genomics. 2022 Mar 18;23(1):216. doi: 10.1186/s12864-022-08429-4.
4
Building alternative splicing and evolution-aware sequence-structure maps for protein repeats.
J Struct Biol. 2023 Sep;215(3):107997. doi: 10.1016/j.jsb.2023.107997. Epub 2023 Jul 14.
5
The Alternative Splicing Gallery (ASG): bridging the gap between genome and transcriptome.
Nucleic Acids Res. 2004 Aug 3;32(13):3977-83. doi: 10.1093/nar/gkh731. Print 2004.
6
SAPFIR: A webserver for the identification of alternative protein features.
BMC Bioinformatics. 2022 Jun 24;23(1):250. doi: 10.1186/s12859-022-04804-w.
8
Transcriptome and genome conservation of alternative splicing events in humans and mice.
Pac Symp Biocomput. 2004:66-77. doi: 10.1142/9789812704856_0007.
9
The Protein-Coding Human Genome: Annotating High-Hanging Fruits.
Bioessays. 2019 Nov;41(11):e1900066. doi: 10.1002/bies.201900066. Epub 2019 Sep 23.
10
Assessment of orthologous splicing isoforms in human and mouse orthologous genes.
BMC Genomics. 2010 Oct 1;11:534. doi: 10.1186/1471-2164-11-534.

引用本文的文献

1
Conservation assessment of human splice site annotation based on a 470-genome alignment.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf184.
2
Toward a comprehensive profiling of alternative splicing proteoform structures, interactions and functions.
Curr Opin Struct Biol. 2025 Feb;90:102979. doi: 10.1016/j.sbi.2024.102979. Epub 2025 Jan 7.
4
Conservation assessment of human splice site annotation based on a 470-genome alignment.
bioRxiv. 2025 Mar 15:2023.12.01.569581. doi: 10.1101/2023.12.01.569581.
5
ExOrthist: a tool to infer exon orthologies at any evolutionary distance.
Genome Biol. 2021 Aug 20;22(1):239. doi: 10.1186/s13059-021-02441-9.

本文引用的文献

2
DIGGER: exploring the functional role of alternative splicing in protein interactions.
Nucleic Acids Res. 2021 Jan 8;49(D1):D309-D318. doi: 10.1093/nar/gkaa768.
4
Functional implications of CaMKII alternative splicing.
Eur J Neurosci. 2021 Oct;54(8):6780-6794. doi: 10.1111/ejn.14761. Epub 2020 May 26.
6
Transcripts' Evolutionary History and Structural Dynamics Give Mechanistic Insights into the Functional Diversity of the JNK Family.
J Mol Biol. 2020 Mar 27;432(7):2121-2140. doi: 10.1016/j.jmb.2020.01.032. Epub 2020 Feb 14.
7
Deep profiling and custom databases improve detection of proteoforms generated by alternative splicing.
Genome Res. 2019 Dec;29(12):2046-2055. doi: 10.1101/gr.248435.119. Epub 2019 Nov 14.
8
Realizing the potential of full-length transcriptome sequencing.
Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190097. doi: 10.1098/rstb.2019.0097. Epub 2019 Oct 7.
9
Next-generation genome annotation: we still struggle to get it right.
Genome Biol. 2019 May 16;20(1):92. doi: 10.1186/s13059-019-1715-2.
10
Architectural Dynamics of CaMKII-Actin Networks.
Biophys J. 2019 Jan 8;116(1):104-119. doi: 10.1016/j.bpj.2018.11.006. Epub 2018 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验