Tan Xin, Dai Yanwan, Humayun Ahmed Imtiaz, Chen Haoze, Allen Genevera I, Jain Parag N
Department of Statistics, Rice University, Houston, TX, USA.
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
Artif Intell Med Conf Artif Intell Med (2005-). 2021 Jun;12721:258-262. doi: 10.1007/978-3-030-77211-6_29. Epub 2021 Jun 8.
Central venous pressure (CVP) is the blood pressure in the venae cavae, near the right atrium of the heart. This signal waveform is commonly collected in clinical settings, and yet there has been limited discussion of using this data for detecting arrhythmia and other cardiac events. In this paper, we develop a signal processing and feature engineering pipeline for CVP waveform analysis. Through a case study on pediatric junctional ectopic tachycardia (JET), we show that our extracted CVP features reliably detect JET with comparable results to the more commonly used electrocardiogram (ECG) features. This machine learning pipeline can thus improve the clinical diagnosis and ICU monitoring of arrhythmia. It also corroborates and complements the ECG-based diagnosis, especially when the ECG measurements are unavailable or corrupted.
中心静脉压(CVP)是靠近心脏右心房的腔静脉中的血压。这种信号波形在临床环境中通常会被采集,但对于使用这些数据来检测心律失常和其他心脏事件的讨论却很有限。在本文中,我们开发了一种用于中心静脉压波形分析的信号处理和特征工程流程。通过对小儿交界性异位性心动过速(JET)的案例研究,我们表明,我们提取的中心静脉压特征能够可靠地检测JET,其结果与更常用的心电图(ECG)特征相当。因此,这种机器学习流程可以改善心律失常的临床诊断和重症监护病房监测。它还证实并补充了基于心电图的诊断,特别是在心电图测量不可用或已损坏的情况下。