Suppr超能文献

基于数据库泛化准则的特征选择的心搏分类。

Heartbeat classification using feature selection driven by database generalization criteria.

机构信息

Electronic Department, National Technological University, C1179AAQ Buenos Aires, Argentina.

出版信息

IEEE Trans Biomed Eng. 2011 Mar;58(3):616-25. doi: 10.1109/TBME.2010.2068048. Epub 2010 Aug 19.

Abstract

In this paper, we studied and validated a simple heartbeat classifier based on ECG feature models selected with the focus on an improved generalization capability. We considered features from the RR series, as well as features computed from the ECG samples and different scales of the wavelet transform, at both available leads. The classification performance and generalization were studied using publicly available databases: the MIT-BIH Arrhythmia, the MIT-BIH Supraventricular Arrhythmia, and the St. Petersburg Institute of Cardiological Technics (INCART) databases. The Association for the Advancement of Medical Instrumentation recommendations for class labeling and results presentation were followed. A floating feature selection algorithm was used to obtain the best performing and generalizing models in the training and validation sets for different search configurations. The best model found comprehends eight features, was trained in a partition of the MIT-BIH Arrhythmia, and was evaluated in a completely disjoint partition of the same database. The results obtained were: global accuracy of 93%; for normal beats, sensitivity (S) 95%, positive predictive value (P(+)) 98%; for supraventricular beats, S 77%, P(+) 39%; and for ventricular beats S 81%, P(+) 87%. In order to test the generalization capability, performance was also evaluated in the INCART, with results comparable to those obtained in the test set. This classifier model has fewer features and performs better than other state-of-the-art methods with results suggesting better generalization capability.

摘要

在本文中,我们研究并验证了一种基于 ECG 特征模型的简单心跳分类器,重点是提高泛化能力。我们考虑了 RR 系列中的特征,以及从 ECG 样本和不同小波变换尺度计算的特征,在两个可用导联上都考虑了这些特征。使用公开可用的数据库(MIT-BIH 心律失常数据库、MIT-BIH 室上性心律失常数据库和圣彼得堡心血管技术研究所(INCART)数据库)研究了分类性能和泛化能力。遵循了医疗器械协会关于分类标签和结果表示的建议。使用浮动特征选择算法在不同的搜索配置下,在训练集和验证集中获得最佳性能和泛化模型。发现的最佳模型包含 8 个特征,在 MIT-BIH 心律失常数据库的一个分区中进行训练,并在同一数据库的一个完全不相交的分区中进行评估。得到的结果为:全局准确率为 93%;正常心跳的灵敏度(S)为 95%,阳性预测值(P(+))为 98%;室上性心跳的 S 为 77%,P(+)为 39%;室性心跳的 S 为 81%,P(+)为 87%。为了测试泛化能力,还在 INCART 中评估了性能,结果与测试集中的结果相当。该分类器模型的特征较少,性能优于其他最先进的方法,结果表明其具有更好的泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验