Suppr超能文献

一种使用卷积神经网络的用于延迟钆增强磁共振成像和电影心脏磁共振成像的监督图像配准方法。

A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks.

作者信息

Upendra Roshan Reddy, Simon Richard, Linte Cristian A

机构信息

Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA.

Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.

出版信息

Med Image Underst Anal. 2020 Jul;1248:208-220. doi: 10.1007/978-3-030-52791-4_17. Epub 2020 Jul 8.

Abstract

Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging is the current gold standard for assessing myocardium viability for patients diagnosed with myocardial infarction, myocarditis or cardiomyopathy. This imaging method enables the identification and quantification of myocardial tissue regions that appear hyper-enhanced. However, the delineation of the myocardium is hampered by the reduced contrast between the myocardium and the left ventricle (LV) blood-pool due to the gadolinium-based contrast agent. The balanced-Steady State Free Precession (bSSFP) cine CMR imaging provides high resolution images with superior contrast between the myocardium and the LV blood-pool. Hence, the registration of the LGE CMR images and the bSSFP cine CMR images is a vital step for accurate localization and quantification of the compromised myocardial tissue. Here, we propose a Spatial Transformer Network (STN) inspired convolutional neural network (CNN) architecture to perform supervised registration of bSSFP cine CMR and LGE CMR images. We evaluate our proposed method on the 2019 Multi-Sequence Cardiac Magnetic Resonance Segmentation Challenge (MS-CMRSeg) dataset and use several evaluation metrics, including the center-to-center LV and right ventricle (RV) blood-pool distance, and the contour-to-contour blood-pool and myocardium distance between the LGE and bSSFP CMR images. Specifically, we showed that our registration method reduced the bSSFP to LGE LV blood-pool center distance from 3.28mm before registration to 2.27mm post registration and RV blood-pool center distance from 4.35mm before registration to 2.52mm post registration. We also show that the average surface distance (ASD) between bSSFP and LGE is reduced from 2.53mm to 2.09mm, 1.78mm to 1.40mm and 2.42mm to 1.73mm for LV blood-pool, LV myocardium and RV blood-pool, respectively.

摘要

延迟钆增强(LGE)心脏磁共振(CMR)成像目前是评估心肌梗死、心肌炎或心肌病患者心肌活力的金标准。这种成像方法能够识别和量化出现高增强的心肌组织区域。然而,由于基于钆的造影剂,心肌与左心室(LV)血池之间的对比度降低,阻碍了心肌的描绘。平衡稳态自由进动(bSSFP)电影CMR成像提供了高分辨率图像,心肌与LV血池之间具有出色的对比度。因此,LGE CMR图像和bSSFP电影CMR图像的配准是准确定位和量化受损心肌组织的关键步骤。在此,我们提出一种受空间变换网络(STN)启发的卷积神经网络(CNN)架构,用于执行bSSFP电影CMR和LGE CMR图像的监督配准。我们在2019年多序列心脏磁共振分割挑战赛(MS-CMRSeg)数据集上评估了我们提出的方法,并使用了几个评估指标,包括LV和右心室(RV)血池中心到中心的距离,以及LGE和bSSFP CMR图像之间血池与心肌轮廓到轮廓的距离。具体而言,我们表明我们的配准方法将bSSFP到LGE的LV血池中心距离从配准前的3.28mm减少到配准后的2.27mm,RV血池中心距离从配准前的4.35mm减少到配准后的2.52mm。我们还表明,对于LV血池、LV心肌和RV血池,bSSFP和LGE之间的平均表面距离(ASD)分别从2.53mm减少到2.09mm、从1.78mm减少到了1.40mm以及从2.42mm减少到了1.73mm。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验