Diaz-Calleja Ricardo, Ginestar Damián, Compañ Moreno Vícente, Llovera-Segovia Pedro, Burgos-Simón Clara, Cortés Juan Carlos, Quijano Alfredo, Díaz-Boils Joaquín
Instituto de Tecnología Eléctrica, Universitat Politècnica de València, 46022 Valencia, Spain.
Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia, Spain.
Polymers (Basel). 2021 Jul 1;13(13):2198. doi: 10.3390/polym13132198.
Electroelastic materials, as for example, 3M VHB 4910, are attracting attention as actuators or generators in some developments and applications. This is due to their capacity of being deformed when submitted to an electric field. Some models of their actuation are available, but recently, viscoelastic models have been proposed to give an account of the dissipative behaviour of these materials. Their response to an external mechanical or electrical force field implies a relaxation process towards a new state of thermodynamic equilibrium, which can be described by a relaxation time. However, it is well known that viscoelastic and dielectric materials, as for example, polymers, exhibit a distribution of relaxation times instead of a single relaxation time. In the present approach, a continuous distribution of relaxation times is proposed via the introduction of fractional derivatives of the stress and strain, which gives a better account of the material behaviour. The application of fractional derivatives is described and a comparison with former results is made. Then, a double generalisation is carried out: the first one is referred to the viscoelastic or dielectric models and is addressed to obtain a nonsymmetric spectrum of relaxation times, and the second one is the adoption of the more realistic Mooney-Rivlin equation for the stress-strain relationship of the elastomeric material. A modified Mooney-Rivlin model for the free energy density of a hyperelastic material, VHB 4910 has been used based on experimental results of previous authors. This last proposal ensures the appearance of the bifurcation phenomena which is analysed for equibiaxial dead loads; time-dependent bifurcation phenomena are predicted by the extended Mooney-Rivlin equations.
电弹性材料,例如3M VHB 4910,在一些开发和应用中作为致动器或发电机受到关注。这是由于它们在电场作用下会发生变形的能力。已经有一些关于它们致动的模型,但最近,有人提出了粘弹性模型来描述这些材料的耗散行为。它们对外部机械或电场力的响应意味着朝着新的热力学平衡状态的弛豫过程,这可以用弛豫时间来描述。然而,众所周知,粘弹性和介电材料,例如聚合物,表现出弛豫时间的分布,而不是单一的弛豫时间。在本方法中,通过引入应力和应变的分数阶导数,提出了弛豫时间的连续分布,这能更好地描述材料行为。描述了分数阶导数的应用,并与以前的结果进行了比较。然后,进行了双重推广:第一个推广涉及粘弹性或介电模型,旨在获得非对称的弛豫时间谱,第二个推广是采用更符合实际的Mooney-Rivlin方程来描述弹性体材料的应力-应变关系。基于先前作者的实验结果,对超弹性材料VHB 4910的自由能密度使用了修正的Mooney-Rivlin模型。最后这个提议确保了分叉现象的出现,针对等双轴静载对其进行了分析;扩展的Mooney-Rivlin方程预测了与时间相关的分叉现象。