Suppr超能文献

利用卷积神经网络提高纤维方向分布估计的精度。

Enhancing the estimation of fiber orientation distributions using convolutional neural networks.

机构信息

School of Biomedical Engineering and Imaging Sciences, King's College London, UK.

Centre for Medical Image Computing, Department of Computer Sciences, University College London, London, UK; Neuroradiological Academic Unit, University College London Queen Square Institute of Neurology, University College London, London, UK.

出版信息

Comput Biol Med. 2021 Aug;135:104643. doi: 10.1016/j.compbiomed.2021.104643. Epub 2021 Jul 14.

Abstract

Local fiber orientation distributions (FODs) can be computed from diffusion magnetic resonance imaging (dMRI). The accuracy and ability of FODs to resolve complex fiber configurations benefits from acquisition protocols that sample a high number of gradient directions, a high maximum b-value, and multiple b-values. However, acquisition time and scanners that follow these standards are limited in clinical settings, often resulting in dMRI acquired at a single shell (single b-value). In this work, we learn improved FODs from clinically acquired dMRI. We evaluate patch-based 3D convolutional neural networks (CNNs) on their ability to regress multi-shell FODs from single-shell FODs, using constrained spherical deconvolution (CSD). We evaluate U-Net and High-Resolution Network (HighResNet) 3D CNN architectures on data from the Human Connectome Project and an in-house dataset. We evaluate how well each CNN can resolve FODs 1) when training and testing on datasets with the same dMRI acquisition protocol; 2) when testing on a dataset with a different dMRI acquisition protocol than used to train the CNN; and 3) when testing on a dataset with a fewer number of gradient directions than used to train the CNN. This work is a step towards more accurate FOD estimation in time- and resource-limited clinical environments.

摘要

局部纤维方向分布(FOD)可通过扩散磁共振成像(dMRI)进行计算。FOD 能够准确地解析复杂的纤维结构,这得益于采用了采集大量梯度方向、高最大 b 值和多个 b 值的采集方案。然而,遵循这些标准的采集时间和扫描仪在临床环境中受到限制,这往往导致 dMRI 仅在单个壳层(单 b 值)采集。在这项工作中,我们从临床采集的 dMRI 中学习改进的 FOD。我们使用约束球谐反卷积(CSD)评估基于补丁的 3D 卷积神经网络(CNN)从单壳层 FOD 回归多壳层 FOD 的能力。我们在来自人类连接组计划和内部数据集的数据上评估 U-Net 和高分辨率网络(HighResNet)3D CNN 架构。我们评估每个 CNN 在以下情况下能够多好地解析 FOD:1)在使用相同 dMRI 采集协议的数据集上进行训练和测试时;2)在用于训练 CNN 的不同 dMRI 采集协议的数据集上进行测试时;3)在用于训练 CNN 的梯度方向数量较少的数据集上进行测试时。这项工作是朝着在时间和资源有限的临床环境中更准确地估计 FOD 迈出的一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验