Zhang Dechao, Zhu Zhaolu, Li Yangjie, Li Xudong, Guan Ziyu, Zheng Jinshui
Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
University of Chinese Academy of Sciences, Beijing, China.
mSystems. 2021 Aug 31;6(4):e0038321. doi: 10.1128/mSystems.00383-21. Epub 2021 Jul 20.
Although the strategies used by bacteria to adapt to specific environmental conditions are widely reported, fewer studies have addressed how microbes with a cosmopolitan distribution can survive in diverse ecosystems. is a versatile genus whose members are commonly found in various habitats. To better understand the mechanisms underlying the universality of , we collected 105 strains from diverse environments and performed large-scale metabolic and adaptive ability tests. We found that most members have the capacity to survive under wide ranges of temperature, salinity, and pH. According to phylogenetic and average nucleotide identity analyses, we identified 27 putative species and classified two genetic groups: groups I and II. Comparative genomic analysis revealed that the members utilize a variety of complex polysaccharides and proteins to support survival in diverse environments and also employ a number of chaperonins and transporters for this purpose. We observed that the group I species can be found in more diverse terrestrial environments and have a larger genome size than the group II species. Our analyses revealed that the expansion of transporter families drove genomic expansion in group I strains, and we identified 25 transporter families, many of which are involved in the transport of important substrates and resistance to environmental stresses and are enriched in group I strains. This study provides important insights into both the overall general genetic basis for the cosmopolitan distribution of a bacterial genus and the evolutionary and adaptive strategies of . The wide distribution characteristics of make it a valuable model for studying the adaptive strategies of bacteria that can survive in multiple habitats. In this study, we reveal that members of the genus have a cosmopolitan distribution and share an extensive adaptability that enables them to survive in various environments. The capacities shared by members, such as their diverse means of polysaccharide utilization and environmental-stress resistance, provide an important basis for their cosmopolitan distribution. Furthermore, the selective expansion of transporter families has been a main driving force for genomic evolution in . Our findings improve our understanding of the adaptive and evolutionary mechanisms of cosmopolitan bacteria and the vital genomic traits that can facilitate niche adaptation.
尽管细菌用于适应特定环境条件的策略已被广泛报道,但关于具有全球分布的微生物如何在不同生态系统中生存的研究较少。 是一个多用途的属,其成员常见于各种栖息地。为了更好地理解 普遍性的潜在机制,我们从不同环境中收集了105株菌株,并进行了大规模的代谢和适应能力测试。我们发现大多数 成员有能力在广泛的温度、盐度和pH范围内生存。根据系统发育和平均核苷酸同一性分析,我们鉴定出27个假定物种,并将其分为两个遗传组:第一组和第二组。比较基因组分析表明, 成员利用多种复杂的多糖和蛋白质来支持在不同环境中的生存,并且还为此目的采用了一些伴侣蛋白和转运蛋白。我们观察到第一组物种可以在更多样化的陆地环境中找到,并且基因组大小比第二组物种更大。我们的分析表明,转运蛋白家族的扩张推动了第一组菌株的基因组扩张,并且我们鉴定出25个转运蛋白家族,其中许多与重要底物的运输以及对环境压力的抗性有关,并且在第一组菌株中富集。这项研究为细菌属的全球分布的总体遗传基础以及 的进化和适应策略提供了重要见解。 的广泛分布特征使其成为研究能够在多种栖息地生存的细菌适应策略的有价值模型。在本研究中,我们揭示了 属成员具有全球分布,并具有广泛的适应性,使其能够在各种环境中生存。 成员共有的能力,例如其多样的多糖利用方式和抗环境压力能力,为其全球分布提供了重要基础。此外,转运蛋白家族的选择性扩张一直是 基因组进化的主要驱动力。我们的发现增进了我们对全球分布细菌的适应和进化机制以及有助于生态位适应的重要基因组特征的理解。