Suppr超能文献

使用可解释的机器学习方法预测抗结核药物性肝损伤:模型开发与验证研究

Predicting Antituberculosis Drug-Induced Liver Injury Using an Interpretable Machine Learning Method: Model Development and Validation Study.

作者信息

Zhong Tao, Zhuang Zian, Dong Xiaoli, Wong Ka Hing, Wong Wing Tak, Wang Jian, He Daihai, Liu Shengyuan

机构信息

Department of Tuberculosis Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.

Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, Hong Kong.

出版信息

JMIR Med Inform. 2021 Jul 20;9(7):e29226. doi: 10.2196/29226.

Abstract

BACKGROUND

Tuberculosis (TB) is a pandemic, being one of the top 10 causes of death and the main cause of death from a single source of infection. Drug-induced liver injury (DILI) is the most common and serious side effect during the treatment of TB.

OBJECTIVE

We aim to predict the status of liver injury in patients with TB at the clinical treatment stage.

METHODS

We designed an interpretable prediction model based on the XGBoost algorithm and identified the most robust and meaningful predictors of the risk of TB-DILI on the basis of clinical data extracted from the Hospital Information System of Shenzhen Nanshan Center for Chronic Disease Control from 2014 to 2019.

RESULTS

In total, 757 patients were included, and 287 (38%) had developed TB-DILI. Based on values of relative importance and area under the receiver operating characteristic curve, machine learning tools selected patients' most recent alanine transaminase levels, average rate of change of patients' last 2 measures of alanine transaminase levels, cumulative dose of pyrazinamide, and cumulative dose of ethambutol as the best predictors for assessing the risk of TB-DILI. In the validation data set, the model had a precision of 90%, recall of 74%, classification accuracy of 76%, and balanced error rate of 77% in predicting cases of TB-DILI. The area under the receiver operating characteristic curve score upon 10-fold cross-validation was 0.912 (95% CI 0.890-0.935). In addition, the model provided warnings of high risk for patients in advance of DILI onset for a median of 15 (IQR 7.3-27.5) days.

CONCLUSIONS

Our model shows high accuracy and interpretability in predicting cases of TB-DILI, which can provide useful information to clinicians to adjust the medication regimen and avoid more serious liver injury in patients.

摘要

背景

结核病是一种大流行病,是全球十大死因之一,也是单一感染源导致死亡的主要原因。药物性肝损伤(DILI)是结核病治疗过程中最常见且最严重的副作用。

目的

我们旨在预测结核病患者在临床治疗阶段的肝损伤状况。

方法

我们基于XGBoost算法设计了一个可解释的预测模型,并根据从深圳市南山慢性病防治中心医院信息系统中提取的2014年至2019年的临床数据,确定了结核病-DILI风险最可靠且最有意义的预测因素。

结果

共纳入757例患者,其中287例(38%)发生了结核病-DILI。基于相对重要性值和受试者工作特征曲线下面积,机器学习工具选择患者最近的丙氨酸转氨酶水平、患者最后两次丙氨酸转氨酶水平测量值的平均变化率、吡嗪酰胺累积剂量和乙胺丁醇累积剂量作为评估结核病-DILI风险的最佳预测因素。在验证数据集中,该模型在预测结核病-DILI病例时的精度为90%,召回率为74%,分类准确率为76%,平衡错误率为77%。10倍交叉验证时受试者工作特征曲线下面积得分为0.912(95%CI 0.890-0.935)。此外,该模型在DILI发病前为患者提前发出高风险警告,中位数为15(IQR 7.3-27.5)天。

结论

我们的模型在预测结核病-DILI病例方面显示出高准确性和可解释性,可为临床医生调整用药方案提供有用信息,避免患者发生更严重的肝损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1552/8335604/076fa68c8207/medinform_v9i7e29226_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验